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Abstract. In this paper, we derive improved uniqueness conditions for a constrained version of
the canonical order-3 tensor decomposition, also known as Candecomp/Parafac (CP). CP decomposes
a three-way array into a prespecified number of outer product arrays. The constraint is that some
vectors forming the outer product arrays are linearly dependent according to a prespecified pattern.
This is known as the PARALIND family of decompositions. We provide both uniqueness conditions
and partial uniqueness conditions for PARALIND, and show that these are improved and more
precise variants of existing conditions. Our results are illustrated by means of examples.
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1. Introduction. Tensors of order 3 are defined on the outer product of three
linear spaces, Ty, £ = 1,2, 3. Once bases of spaces Ty are fixed, they can be represented
by three-way arrays. For simplicity, tensors are usually assimilated with their array
representation.

The canonical order-3 tensor decomposition is of the form

R
(11) X:Z(arob’rocT)7
r=1

where X is an I x J x K tensor (or array), a, (I x 1), b, (J x 1), and ¢, (K x 1)
are vectors, and o denotes the outer vector product. For vectors a, b, c, the outer
vector product a o b o c is an order-3 tensor with entries a;bjci. We refer to X in
(1.1) as having three modes. The entry x;; of X is the entry in row 4, column j,
and frontal slice k. Let A = [a;...ag|, B = [b;...bg], and C = [c; ...cR] denote
the component matrices. We denote an order-3 decomposition (1.1) as (A, B, C).
Note that when the modes of X are permuted in (1.1), the component matrices are
permuted identically.

An order-3 tensor has rank 1 if it can be written as the outer product of three
vectors. The rank of an order-3 tensor X is defined as the smallest number of rank-
1 tensors whose sum equals X. Hence, (1.1) decomposes X into R rank-1 terms.
Hitchcock [17], [18] introduced tensor rank and the related tensor decomposition (1.1),
also for order n > 3. The same decomposition was proposed independently by Carroll
and Chang [5] and Harshman [16] for component analysis of tensors. They named it
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Candecomp and Parafac, respectively, and we refer to (1.1) as the Candecomp/Parafac
(CP) decomposition.

For a given order-3 tensor and number R of rank-1 components, a best-fitting
decomposition (1.1) is usually found by an iterative algorithm. The most well-known
algorithm is alternating least squares. A comparison of algorithms can be found
in Tomasi and Bro [43]. Note that a best-fitting decomposition is a best rank-R
approximation of the tensor.

For later use, we mention that the CP decomposition (1.1) is a special case of the
Tucker3 decomposition [44]. The latter is defined as

P
(1.2) K:ZZZQTW (ar obpocy).

r=1p=1q=1

Clearly, the case with R = P = @ and g,pq = 0 if (r,p, q) # (r,7,7) yields (1.1). The
R x P x Q array G with entries grpq is referred to as the core array. In Tucker3,
the matrices A = [a;...ag|, B=[b1...bp], and C = [c; ...cg] are the component
matrices.

CP and Tucker3 can be seen as generalizations of principal component analysis
for matrices. They can be used for exploratory component analysis of three-way
data. Such (real-valued) applications of CP and Tucker3 occur in psychology [24]
[21] and chemometrics [33]. Complex-valued CP is used in, e.g., signal processing
and telecommunications research [30], [31], [12]. Here, the decompositions are mostly
used to separate signal sources from an observed mixture of signals. CP of order 4
describes the basic structure of fourth-order cumulants of multivariate data on which
many algebraic methods for independent component analysis (ICA) are based [6],
[8], [11], [7]. A general overview of applications of CP and Tucker3 can be found in
[22], [1].

A potential problem of computing a best-fitting CP decomposition (1.1) is that
an optimal solution may not exist. Indeed, a tensor may not have a best rank-R
approximation. This is due to the fact that the set of tensors of rank at most R is
not closed for R > 2; see [14]. In such cases, diverging components (i.e., close to
linear dependence and large in magnitude) occur while running an iterative algorithm
designed to find a best rank-R approximation; see [26], [23], [34], [35]. This problem
can be fixed by including interaction terms in the CP decomposition [40], [28], [38].

An attractive feature of the CP decomposition (1.1) is that the component ma-
trices are unique up to a simultaneous column permutation and columnwise rescaling
under relatively mild conditions. Formally we define uniqueness up to permutation
and scaling of (A, B, C) as follows.

DEFINITION 1.1. The CP decomposition (A, B, C) is called unique up to permu-
tation and scaling if any alternative decomposition (A, B,C) satisfies A = ATLA,,
B=BII A, and C = CII A, with II an R x R permutation matriz, and Ag, Ay, A
nonsingular diagonal matrices such that AgApA. = 1IR.

Hence, a CP decomposition (1.1) is unique up to permutation and scaling if the
only ambiguities it contains are the permutation of the R rank-1 components, and
the scaling of the three vectors constituting each rank-1 component.

The classical uniqueness condition for CP is due to Kruskal [25]. Kruskal’s condi-
tion relies on a particular concept of matrix rank that he introduced, which has been
named k-rank after him. Specifically, the k-rank of a matrix is the largest number x
such that every subset of x columns of the matrix is linearly independent. We denote
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the k-rank of a matrix A as ka. For a CP decomposition (A, B, C), Kruskal [25]
proved that

(1.3) 2R+2<ka +kp + kc

is a sufficient condition for uniqueness up to permutation and scaling. A more con-
densed and accessible proof of (1.3) was given by Stegeman and Sidiropoulos [39]. See
Rhodes [27] for a different approach. Kruskal’s uniqueness condition was generalized
to order n > 3 by Sidiropoulos and Bro [29].

The (mode-3) matrix unfolding of the CP decomposition (A, B, C) is given by

(1.4) (A®B)CT,

where ® denotes the (columnwise) Khatri-Rao product: (A®B) =[a;®by ... ag®
bg], with ® denoting the Kronecker product.

Less restrictive uniqueness conditions than (1.3) have been obtained for the case
where (at least) one of the component matrices has full column rank; i.e., the vectors in
(at least) one mode j are linearly independent. In this case, the uniqueness condition
does not depend on component matrix j. Moreover, alternative decompositions are
found only in the column space of the Khatri-Rao product of all component matrices
except the jth one. See Jiang and Sidiropoulos [19] (order 3), De Lathauwer [9] (order
3 and 4), and Stegeman [36] (order 3). See Stegeman [37] for a generalization to order
n > 3.

In this paper, we consider uniqueness conditions for order-3 CP with linear de-
pendencies in the columns of the component matrices A, B, C. In particular, the
patterns of the linear dependencies are known and fixed. This type of decomposi-
tion is introduced in Bro et al. [4], and is named PARALIND (parallel profiles with
linear dependencies). Instead of (A, B, C), a PARALIND decomposition is given by
(A¥,B®,CN), where A is I x Ry, Bis J x Ry, Cis K x Ry, W is Ry X R, ® is
Ry x R, and @ is R3 x R. The matrices ¥, ®, and €2 are fixed and contain the
patterns of linear dependency of the columns of A¥, B®, and CS2, respectively. We
refer to ¥, ®, and €2 as the constraint matrices.

Throughout, we assume A, B, C to have full column rank, and ¥, ®, €2 to have
full row rank. In other cases, the PARALIND decomposition has a superfluous factor.
Indeed, suppose rank(A) < Rj, and Ad = 0. Then A¥ = (AD)(D~1¥), with D
nonsingular such that AD = [A1 ... ap—1 0 &py1 ... Ag,] for some column p (vector
d is the pth column of D). Hence, the PARALIND decomposition is equivalent to
a PARALIND decomposition in which A is replaced by [&1 ... &p—1 841 ... AR, ),
and W is replaced by D~!W with its pth row deleted. It can be shown analogously
that the PARALIND decomposition has a superfluous factor if one of ¥, ®, 2 does
not have full row rank. We also assume that ¥, ®, £2 do not contain all-zero columns,
which guarantees R rank-1 terms in the PARALIND decomposition.

In Bro et al. [4], PARALIND decompositions are used to analyze flow injection
data and fluorescence data. In de Almeida, Favier, and Mota [2], [3] PARALIND
decompositions are used to model multiple-antenna transmissions in the context of
wireless telecommunications and signal processing. Related works in signal processing
are [32], [13]. In [3], the constraint matrices ¥, ®, Q have columns from the R; X R;
identity matrix, j = 1,2, 3. This form of PARALIND is called CONFAC (constrained
factors) by [3].

For a given data array and constraint matrices ¥, ®,€2, the best-fitting PAR-
ALIND component matrices A, B, C can be found using a similar alternating least
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squares algorithm as can be used for the CP decomposition; see [4] and [3]. As for CP,

there may not be an optimal solution for a particular PARALIND decomposition.
As an example of PARALIND, let Ry = Ro = R3 =3, R=4, and

(1.5)

1 0 01 1.0 0 0 1.0 0 0
=010 0], =101 0 1], Q=101 0 0
0 01 0 0 01O 0 011

We have AW = [a; &, a3 a,], B® = [b; by bs by, and CQ = [¢; & & &]. The
rank-1 terms of the PARALIND decomposition are given by

(16) (51 ¢] Bl o él) + (52 o BQ o 62) + (ég o 63 ¢] 63) + (él ¢] }52 ¢] 63) .

As shown by [3], a PARALIND decomposition can be written as a Tucker3 decompo-
sition with a constrained R; X Ro X Rg core array

R
(1.7) G=) (¥, 0¢,0w),
r=1

where v¢,., ¢,, and w, are the rth columns of ¥, ®, and €2, respectively. Hence, the
core array G satisfies a CP decomposition with component matrices ¥, ®, Q. Con-
strained Tucker3 models have applications in chemometrics; see [33]. In the example
(1.5)—(1.6), the Tucker3 core is 3 x 3 x 3 with frontal slices

(1.8)

OO =
o O O

0
0
0

o O O
o = O
o O O
o O O
OO =

0
0
1

A systematic treatment of uniqueness properties of the PARALIND component ma-
trices A, B, C is presented in Stegeman and de Almeida [41]. The uniqueness property
is considered for each component matrix separately. A distinction is made between
uniqueness up to permutation and scaling and partial uniqueness. For CP, the term
partial uniqueness has been used to describe cases where some columns of a compo-
nent matrix are identified up to their linear span only, or where only a finite number
of alternative CP solutions are available (up to permutation and scaling); see Ten
Berge [42]. For PARALIND, we adopt the first definition, and we call A partially
unique if its columns can be partitioned into disjoint subsets and each subset is iden-
tified up to its linear span. The same definition is used by Bro et al. [4] and by [41].
Results on partial uniqueness for CP or PARALIND have been mostly ad hoc. The
only systematic approach is found in [41], and in this paper. The analysis of [41] is
based on the approach of Jiang and Sidiropoulos [19] for CP with full column rank
in (at least) one mode. Below, we show that the idea of Guo et al. [15] to study CP
uniqueness by splitting up a CP decomposition into smaller decompositions when one
component matrix is unique up to permutation and scaling can also be used to obtain
partial uniqueness results for PARALIND.

In this paper, we present improved and more precise variants of the main PAR-
ALIND uniqueness conditions of [41]. We reprove the uniqueness conditions of [41]
using simpler proofs, and show that our improved uniqueness conditions follow natu-
rally from these proofs. The reason why the proofs are simpler is because we do not
use Kruskal’s [25] permutation lemma (in case of uniqueness up to permutation and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/11/12 to 129.125.139.145. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1254 ALWIN STEGEMAN AND TAM T. T. LAM

scaling) or De Lathauwer’s [10] equivalence lemma for partitioned matrices (in case
of partial uniqueness). Our uniqueness conditions are relatively easy to check with
the use of (symbolic) linear algebra computation software, and the improvement with
respect to the results of [41] is demonstrated by means of examples.

A different approach to obtain conditions for PARALIND uniqueness (up to per-
mutation and scaling) is via the Kruskal-type uniqueness results of [15] for CP with
proportional vectors in one mode. We also compare our uniqueness conditions with
those obtained via the approach of [15] for CP. Our examples show that it depends
on the particular PARALIND decomposition which type of uniqueness condition is
more powerful or appropriate.

In applications of PARALIND decompositions, the component matrices can be
real-valued [4] or complex-valued [2], [3]. To the best of our knowledge, in all PAR-
ALIND applications the constraint matrices are real-valued. Our results and those in
[41] are proven for real component matrices. However, they can be translated easily
to the complex case. We will elaborate on this in the discussion section at the end of
this paper.

This paper is organized as follows. Section 2 states conditions for uniqueness up
to permutation and scaling of one PARALIND component matrix, and includes our
improved condition. Section 3 explains how our PARALIND uniqueness condition
can be checked more easily with the help of (symbolic) linear algebra computation
software. Section 4 contains examples in which we apply the uniqueness conditions of
section 2. In section 5 we present partial uniqueness conditions for one PARALIND
component matrix, including our improved condition. These conditions are applied
in the examples contained in section 6. Finally, section 7 contains a discussion of our
findings.

2. Uniqueness conditions for PARALIND. Here, we present conditions for
uniqueness up to permutation and scaling of one PARALIND component matrix.
Due to the linear dependencies in the columns of A\Il B‘I> and CS2, there is less
freedom of scaling/counterscaling in the vectors constituting each rank-1 term than
there is in CP. Also, jointly permuting the order of the columns of A B C may result
in a PARALIND decomposition with different constraint matrices. To avoid these
complications, uniqueness in PARALIND is considered for each component matrix
separately. See [41, section 3] for more details. We define uniqueness up to permuta-
tion and scaling of a PARALIND component matrix as follows.

DEFINITION 2.1. Let the PARALIND decomposition (A%, B®,CQ) be such
that A,f’) C have full column rank, and ¥, ®,€ have full row rank and no all-zero
columns. The component matriz A is called unique up to permutation and scaling
if any alternative decomposition (AW, B®,CR) satisfies A = ATLA,, with TI an
Ry x Ry permutation matriz, and A, a nonsingular diagonal matriz.

In section 2.1, we state the uniqueness condition for one PARALIND component
matrix of Stegeman and de Almeida [41] and our improved version of it. In section 2.2,
we state a PARALIND uniqueness condition derived from a CP uniqueness condition
of Guo et al. [15].

2.1. Uniqueness conditions for one PARALIND component matrix. Be-
fore we present the PARALIND uniqueness result of Stegeman and de Almeida [41],
we define three matrix unfoldings of a PARALIND decomposition. Let

(21) G =(®oQ)PT, Gy=(Q0ov)eT, G;=(To )

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/11/12 to 129.125.139.145. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

IMPROVED PARALIND UNIQUENESS CONDITIONS 1255

The mode-1 matrix unfolding of the PARALIND decomposition (A®¥, B®, CQ) is
defined as

(2.2) (B® 6 CQ) (A¥)T = (B C)G, AT .
Its mode-2 matrix unfolding is defined as

(2.3) (CQ o AT) (B2)T = (CoA)G, BT,
and its mode-3 matrix unfolding is defined as

(2.4) (AT & B®) (C)T = (A®B)G;CT.

Stegeman and de Almeida [41] prove the following PARALIND uniqueness condition.
Let

(2.5) NV = rank(® diag(y] ) Q7), j=1,...,Ry,
(2.6) N = rank(Q diag(¢]) ®7), j=1,...,R,,
(2.7) N = rank(® diag(w?) ®7) , j=1,...,Rs,

where ’I/J? denotes row j of ¥, ¢>? denotes row j of ®, and w? denotes row j of Q.
Let w(-) denote the number of nonzero entries of a vector.

THEOREM 2.2. Let the PARALIND decomposition (A%, B®, CQ) be such that
1~X, ]§, C have full column _rank, and ¥, ®, Q2 have full row rank and no all-zero columns.
The component matrix A is unique up to permutation and scaling if G1 has full col-
umn rank, and if for any nonzero vector d,

(2.8)  rank(®diag(®7d) Q7) < max(N{,...,Ny))  implies  w(d) =1.

Proof. See Stegeman and de Almeida [41, section 4.1]. See Appendix A for a
simpler proof. a

For uniqueness of A it is necessary that G has full column rank; see [41, section
4.2]. Our improved version of Theorem 2.2 is as follows.

THEOREM 2.3. Let the PARALIND decomposition (K\Il,]gi’, (~JQ) be such that
A, ]§, C have full column _rank, and ¥, ®, 2 have full row rank and no all-zero columns.
The component matriz A is unique up to permutation and scaling if G1, G2, Gs have
full column rank, and if for any set of Ry linearly independent vectors di,...,drg,,

. ran iag ; =N, 7=1,...,R;, implies
2.9 k(® diag(®7d;)QT) =NV, j=1,... R, impli
w(dj):l, jzl,...,Rl.

Proof. See Appendix A for the proof. d

The proofs of Theorems 2.2 and 2.3 are in Appendix A. Our proof of Theorem 2.2
is simpler than the one given in [41], since we do not use Kruskal’s [25] permutation
lemma.

It can be seen that condition (2.8) implies condition (2.9). Hence, if not only
G but also Gy and G3 have full column rank, then Theorem 2.3 is a relaxation of
Theorem 2.2. As we will see in section 4, cases for which condition (2.9) holds but
not condition (2.8) are easy to find in the literature.
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By interchanging the roles ofj&\ll, E@, and CQ in Theorems 2.2 and 2.3, con-
ditions for uniqueness of B and C can be obtained. The roles of G1, G2, Gz and
N ;1), N ;2), N ;3) must be interchanged correspondingly.

For later use, we state the following result. L

PROPOSITION 2.4. Let the PARALIND decomposition (AW B®, CQ) be such
that 1&, E, C have full column rank, and ¥, ® Q have full row rank and no all-zero
columns. Moreover, let the PARALIND decomposition have alternative (AW, B®, C)
with the same residuals. _

(i) If Gy has full column rank, then A = A'S for some nonsingular matriz S.

(ii) If G2 has full column rank, then B = BT for some nonsingular matriz T.

(iii) If G3 has full column rank, then C = cCU for some nonsingular matriz U.

Proof. See de Almeida, Favier, and Mota [3], or Stegeman and de Almeida [41,
Proposition 3.3]. O

2.2. PARALIND uniqueness via CP uniqueness. Since a PARALIND de-
composition (AW, B®,CQ) is a constrained CP decomposition, one might wonder
whether CP uniqueness conditions can be used to prove the uniqueness of a PAR-
ALIND component matrix. The following example shows that CP uniqueness of AW
does not always imply uniqueness of A in PARALIND. Let ® = Q2 = I3 and

(2.10) \1::[(1) ) H

Let K, ]§, C have full column rank. The decomposition (K\Il, ]§, (~3)7 interpreted as a
CP decomposition, is unique up to permutation and scaling since it satisfies Kruskal’s
uniqueness condition (1.3). The question is whether this implies that matrix A is
unique up to permutation and scaling in the PARALIND decomposition (./1\11, ]§, 6)
Let an alternative PARALIND decomposition be given by (AW,B,C). From the
CP uniqueness, it follows that A% = AWIIA, with IT a 3 x 3 permutation matrix,
and A a nonsingular 3 x 3 diagonal matrix. If PARALIND uniqueness of A holds,
then this should imply A = ATI,A,, with I, a 2 x 2 permutation matrix, and As a
nonsingular 2 x 2 diagonal matrix. However, the following example shows that this is
not true. Let

(2.11)
00 1 1 0 0
K:H?],H: 1 00|, A=|0 -1 0 ,A:[?j].
010 0 0 -1
Then it follows that
< + 0 -1 -1
(2.12) A\II—A\IIHA—{I B o}

But the columns of A and A are not equal up to permutation and scaling. Hence,
matrix A is not unique in the PARALIND decomposition (A®¥, B, C) while the de-
composition is unique when interpreted as a CP decomposition. _

In general, for a decomposition (AW, B®, CQ2), PARALIND uniqueness of A
does follow from CP uniqueness of AV if © contains only columns of the Ry x R
identity matrix. In that case, the equality 5‘11 = AVWIIA implies that the columns of
A are rescaled versions of the columns of A. Since A has full column rank, it follows
from
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(2.13) A=AvA'ITe” (wwl)?

that also A has full column rank. Therefore, the relations between the columns of A
and A are one-to-one, and we have A = AII,A, for some permutation matrix IT,
and a nonsingular diagonal matrix A,. B

We use this fact to obtain PARALIND uniqueness conditions for A from the
Kruskal-type CP uniqueness conditions by Guo et al. [15] for AW with kx4 = 1.

THEOREM 2.5. Let the PARALIND decomposition (A%, B®, CQ) be such that
1~X, ]§, C have Sfull column rank, and ¥, ®, Q have full row rank and no all-zero columns.
Also, let ¥ contain only columns of the Ry X Ry identity matriz, and let Ry < R. The
component matriz A is unique up to permutation and scaling if one of the following
holds:

(i) rank(®) + ke + ko > 2R+ 2,

(ii) ke < rank(®), ko < rank(€2), rank(¥) + ke + ko > 2R+ 1,

(iii) rank(¥) + ks + ko + max(rank(®) — kg, rank(Q) — ko) > 2R+ 2,

rank(¥) + min(ks, ko) > R+ 2.

Proof. Guo et al. [15, Theorems 2.1, 2.2, 2.3] show that conditions (i)—(iii)
are sufficient for CP uniqueness up to permutation and scaling of AW in the CP
decomposition (A¥, B®, CQ). Note that matrices A, B, C drop from conditions (i)—
(iii) since they have full column rank. As argued above, the conditions on ¥ allow
the CP uniqueness of AW to be translated to PARALIND uniqueness of A. O

It was established in [15] that if A, B, C have full column rank, then the con-
ditions of Theorem 2.5 are weaker than the ones of Theorem 2.2 when ke and ko
are sufficiently large. The conditions of Theorem 2.5 are stronger than the ones of
Theorem 2.2 for lower values of ke and kq.

3. How to check condition (2.9). Here, we discuss how condition (2.9) can be

checked using (symbolic) linear algebra software. For each distinct value of N ;1), we
should determine the linearly independent vectors d; satisfying (2.9). We start with
the case N ;1) = 1. A matrix has rank 1 if all its 2 x 2 submatrices have determinant
zero, i.e., if all its 2 x 2 minors are zero. Let d; = (aq ... ag,)?. Each entry of
® diag(¥7d;) QT is a linear function of aq,...,ar, with no constant term. As a
result, a 2 x 2 minor of ® diag(¥7d;) Q7 is a second degree homogenous polynomial
in a1,...,ag,, or it is zero. The matrix ® diag(¥7d;) Q27 has size Ry x R3. Hence,
there are Ro(Ro—1)R3(R3—1)/4 determinants to check. Using symbolic computation
software, we can write this as the linear system

1

(3.1) (SO Bethrael BE
aq
of,

where the matrix U) has Ry(Ry — 1)R3(R3 — 1)/4 rows and Ry (R; +1)/2 columns.
Each row in (3.1) corresponds to a distinct 2 x 2 minor. To obtain solutions for
a1,...,aR,, we can analyze the right null space of U, For example, the MATLAB
command null (U1, ’r’) yields basis vectors for the right null space of UM") containing
a lot of zero entries. If all basis vectors have zeros in the first Ry(R; — 1)/2 entries,
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then asay = 0 for s # ¢. This implies w(d;) < 1. Analogously, the last Ry entries of
the basis vectors may be checked to obtain constraints of the form a2 = 0. Note that

Ry
(3.2) ® diag(®”d;) Q" = > " a, (®diag(y]) Q7).
s=1

Hence, if NV = rank(® diag(y?) QT) = 1, then the term a? does not occur in the
2 x 2 minors of the matrix ® diag(¥7d;) Q7.

For N ;1) = 2, condition (2.9) can be checked in the same way as above. Now
all 3 x 3 minors of ® diag(¥7d;) QT should be zero. Each minor is a third degree
homogenous polynomial in «1,...,ag,, or it is zero. Analogous to (3.1), we may
build the linear system

Q10203

QR —20R —1QR,
a%ag

2
OleaRl,1
af

3
aRl

The right null space of U®) may be analyzed to obtain solutions for o, ..., oR,. It
follows from (3.2) that the term a2 does not occur in the 3 x 3 minors if N <2
Also, the terms a2ay, s # t, do not occur if NY =1,

For N J(l) > 3, an analogous method can be used. Whether or not it is convenient
to analyze the minors of ® diag(¥7d;) QT by means of the linear systems as above,
or by writing out the minors, will depend on the complexity of the constraint matrices
¥, & Q. When the values of N ;1) are low and the constraint matrices contain many
zero entries, building the complete linear system as above may not be convenient.
This will become clear in the examples in the next section. Also, we will see that
the constraints imposed on d; by condition (2.9) for low NN, J(l) may imply additional

constraints on d; for higher N;l). This is because the vectors di,...,dg, should be
linearly independent.

4. Examples of uniqueness in PARALIND. Here, we demonstrate the im-
provement when using Theorem 2.3 instead of Theorem 2.2. Also, the examples
show that Theorem 2.3 may imply uniqueness in cases where Theorem 2.5 does not.
In Example 1, matrix A is unique by Theorem 2.5 and Theorem 2.3 but not by
Theorem 2.2. In Example 2, we prove the uniqueness of A,B,C by means of
Theorem 2.3 and some further analysis. Theorems 2.2 and 2.5 cannot be used for
this. In Example 3, we show that the particular form of alternatives C for C = I, can
be understood by using Theorem 2.3. This is not the case for Theorem 2.2. To sum
up, our examples demonstrate that Theorem 2.3 yields more insight into PARALIND
uniqueness and the forms of alternative decompositions than Theorem 2.2. In our
examples, we assume that A, B, C have full column rank.
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Ezample 1. This example is taken from Guo et al. [15, Example 1]. We have
R1:R2=R3:5,R=6, and

(41) v = [15 e], b = [15 f], Q= [15 g],
wheree = (0000 1)T, f=(11111)7, and g = (1111 0)T. Since rank(¥) = 5,

ke = 5, and kg = 4, matrix Ais unique up to permutation and scaling by Theorem 2.5
(i). In [15] it was verified that condition (2.8) of Theorem 2.2 does not hold. Next,
we show that condition (2.9) of the new Theorem 2.3 does hold.

We leave it to the reader to verify that G, Ga, Gs have full column rank, and
that Nl(l) = Nél) = él) = il) =1 and Nél) = 2. First, we check condition (2.9)

for Nj(l) = 1. We have

a1 + as as as as 0
Qs oo + (6% (6% 0
(4.2) P diag(lIlej) Qf = as as as + as as 0 ,
as as (67 ag+as 0
(673 (673 (6751 (673 (6%:3

with d; = (a1 a2 a3 au a5)T. By using symbolic computations in MATLAB, we con-
struct the matrix UM in (3.1) from the distinct 2 x 2 minors of ® diag(¥7d;) Q7.
Analyzing the right null space of U®) with the MATLAB command null (U1,’r’)
yields the following constraints: asa: = 0, s # ¢, and a2 = 0. Since Nl(l) = Nél) =
Nél) = N, f) = 1, we need to pick four linearly independent vectors d, ..., d4 satis-
fying these constraints. Each vector can have at most one nonzero entry, and the last
(fifth) entry is zero in all four vectors, which implies that di,...,d4 are equal to the
first four columns of I up to permutation and scaling.

The case N;l) = 2 corresponds to a fifth vector ds. Since dj,...,d4 have their
fifth (last) entry equal to zero, it follows that as # 0 in dj in order to have five
linearly independent vectors dy, ..., ds. We denote a 3 x 3 minor of ® diag(¥7d;) Q7
as M (yypw,zyz), Where rows u,v, w and columns x,y, z are included. We have
(4.3)

M 125145 = ara?, M 235 245) = a0, M 235 345) = —aga; M 345,245) = a0? .

Since as # 0, it follows that a3 = as = a3 = ay = 0. Hence, vector dj is equal to the
fifth column of Is up to scaling. This implies that [d; ... ds] = ITA, and condition
(2.9) holds.

Ezample 2. The next example is taken from [41, section 8]. Let Ry = Ry = R3 =
3, let R =4, and let ¥, ®, € be given by (1.5). In [41] it is claimed that uniqueness
of ;&,]A?;, C follows from rewriting the PARALIND decomposition as Tucker3 with
core (1.7) and applying a result from Kiers, Ten Berge, and Rocci [20] on Tucker3
uniqueness. This claim is false, however. The result from [20] does not allow certain
Tucker3 core entries to be set to zero, which is done in this choice of (¥, ®, )
(equation (1.8) gives the core array for this example). However, by using Theorem 2.3
and some further analysis, we show that matrices ;&, ]§, C are indeed unique up to
permutation and scaling. Theorem 2.2 cannot be used for this.

First, we consider uniqueness of A. We have rank(¥) = 3, kg = 1, and kg = 1.
Conditions (i)—(iii) of Theorem 2.5 do not hold. Next, we consider condition (2.8)
of Theorem 2.2. It can be verified that G, G2, Gz have full column rank, and that
N =2 and NV = NV = 1. We have
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(651 0 0
(4.4) ® diag(¥7d;)) Q" =] 0 a2 a1 |,
0 0 Qs

with dj = (a1 a2 a3)T. Since this matrix has rank 2 if a; # 0, ag # 0, and a3 = 0,
condition (2.8) does not hold. Finally, we turn to condition (2.9) of Theorem 2.3. For
N;l) = 1, analysis of the right null space of U™ (or writing out the 2 x 2 minors by
hand) yields the constraints ooy = 0, s # t, and o = 0. Since we need two linearly
independent vectors do, d3 satisfying these constraints, it follows that they are equal
to columns 2 and 3 of I3 up to permutation and scaling. For N;l) = 2, we need a
third vector d; such that di,ds,ds are linearly independent. It follows that a; # 0
for di. There is only one 3 x 3 minor of ® diag(¥7d;) Q7 (the determinant of the
matrix itself), which reads as ajasas. Since oy # 0, we obtain asas = 0. We have
uniqueness of Aif ay = az = 0.

To prove this, we return to equating the PARALIND decomposition to its alter-
native. Since B and C have full column rank, we set B = C = I3 without loss of
generality; see [41, lemma 3.4]. Asin (A.4), we write

(4.5) ® diag(¥”d;) Q7 = B&® diag(yp; ) Q"CT,  j=1,2,3.

Let dy = (0 * 0)7 and d3 = (0 0 *)”, where * denotes a nonzero entry. For j = 2,
we use (4.4) and (4.5) to obtain

000
4.6 ® diag(PTdo) QT = | 0 % 0 | = byl
2

000

which implies that by = (0 * 0)7 and €2 = (0 * 0)7. Analogously, for j = 3 we get

00 0
(4.7) ® diag(¥7d;) QT = | 0 0 0 | =bszcl,
0 0 =«

which implies by = (0 0 )7 and €3 = (0 0 ¥)T. Finally, for j = 1 we have

a1 0 0
(4.8) ®diag(®7d)) QT =| 0 a2 a1 | =bjel +boct,
0 0 Qa3

with a3 # 0 and asag = 0. It follows from the above that matrix 5263T has only its
(2, 3)-entry nonzero. Hence, the rank-1 matrix bi€} is equal to the left-hand side of
(4.8) with the (2, 3)-entry having any convenient value. For oy # 0, it follows that
az = a3 = 0 must hold. _
_ Uniqueness of B and C follows analogously by interchanging the roles of AW,
B®, and CS.

Ezample 3. This example is taken from Bro et al. [4, section 3.2.5]. We have
R1=3, R2=6, R3=4,R=6, ‘I>=IG, and

IR

49) ¥=|l001100|, Q=
000011 00 0 0 1 —1
01 0 1 0 1
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In Stegeman and de Almeida [41, section 5] it was verified that A is unique by
condition (2.8). Since rank(¥) = 3, kg = rank(®) = 6, and ko = rank(Q) = 4,
conditions (i)—(iii) of Theorem 2.5 do not hold.

Numerical experiments yield alternatives for C = 1, of the form

0 0
(4.10) C=

x OO %
*x OO0 O

* 0
0 =
* ok
where * denotes a nonzero element. Hence, only the last column of C appears to
be identified up to scaling. Or one could say that only the first three rows of C
are identified. In [41, section 10], it was stated that this type of uniqueness is not
understood from condition (2.8). By making use of the new condition (2.9), however,
we are able to explain this form of C. First, we translate condition (2.9) to C. It can
be verified that G, Gy, G have full column rank, and that N = N{¥ = N{*) =1
and Nf) = 3. We have

a; ag—a; 0 0 0 0
(4.11)  Tdiag(QTdj)) @’ =] 0 0 @y ag—ag 0 0 :
0 0 0 0 Qs 4 — Q3

with d; = (01 a2 a3 a4)T. Analysis of the 2 x 2 minors shows that this matrix has
rank 1 only if asay = 0 for s # ¢, and only if @y = 0. Since we need three linearly
independent vectors di,ds,ds satisfying these constraints, it follows that they are
equal to the first three columns of I up to permutation and scaling. The matrix has
to have rank N, f’) = 3 for a vector dy that is linearly independent from d;,ds,ds.
This implies ay # 0 in dy4. The entries o, a2, az can be nonzero as well. Hence, we
have constrained the alternative to

O O *

(4.12) cT=

(an)

O O *x O
O ¥ © O
¥ X X ¥

where the order of columns may be different (this also depends on the uniqueness
properties of A and ]§) For a nonsingular matrix X, we use the notation X7 =
(X~HT = (XT)~L. For the form of C~7 in (4.12), we obtain a C exactly of the form
(4.10). Hence, three unique columns of C~7 translate into three unique rows of C.

5. Partial uniqueness conditions for PARALIND. Apart from uniqueness
up to permutation and scaling, other types of uniqueness are also encountered in
PARALIND decompositions. In this section, we present so-called partial uniqueness
conditions, where we call component matrix B partially unique if its columns can
be partitioned into disjoint subsets and each subset is unique up to a nonsingular
transformation. This definition is used in Bro et al. [4] and Stegeman and de Almeida
[41]. For partial uniqueness in CP, see Ten Berge [42]. Formally, we define partial
uniqueness in PARALIND as follows. L

DEFINITION 5.1. Let the PARALIND decomposition (A¥,B®, CQ) be such
that A,E,é have full column rank, and let ¥, ®,Q have full row rank and no
all-zero columns. Let the columns of B be partitioned into disjoint subsets as BII, =
[B1]...|BF], where Il is a permutation matriz. We call B partially unique with
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respect to IIy if, for any alternative PARALIND decomposition (AW, B®, CQ) with
B partitioned as BIL, = [By]|...|Bp], it holds that By = Eﬂ(f) S¢, f=1,...,F,
with 7(-) a unique permutation on {1,...,F}, and Sy a unique nonsingular matriz.
Note that when checking partial uniqueness of B one is free to choose a suitable
column permutation Il and partition of B ITy.

In section 5.1, we present the partial uniqueness condition of [41] as well as our
improved version of it. The relation between these two conditions is analogous to
the relation between Theorems 2.2 and 2.3. In section 5.2, we discuss an alternative

approach to obtain a partial uniqueness condition based on a result for CP by Guo
et al. [15].

5.1. Partial uniqueness conditions for one PARALIND component ma-
trix. The partial uniqueness condition of [41] is as follows. For a partitioned vector
= (xT|...|xE)T, let w'(x) denote the number of parts of x that are not all-zero.
For a vector gy partitioned as x, with w'(gf) =1 and generic! entries in part f, let

(5.1) M = rank(Q diag(® I, g) ®T),  f=1,... F.

THEOREM 5.2. Let the PARALIND decomposition (A%, B®, CQ) be such that
A B C have full column rank, and ¥, ®, 2 have full row rank and no all-zero columns.
Let the columns of B be partitioned as BII, = [By|...|Br|, where IL, is a permu-
tation matriz. If Go has full column rank, and if for any nonzero vector d with the
same partition as B 11y,
(5.2)

rank(Q diag(®7 T, d) ¥7) < max(M¥,..., M) implies  w'(d) =1,

then B is partially unique with respect to Iy, as defined in Definition 5.1.

Proof. See Stegeman and de Almeida [41, section 6]. See Appendix B for a simpler
proof. |

When taking the column blocks of B equal to its columns, i.e., setting I, = I,
and F' = Ry, Theorem 5.2 reduces to Theorem 2.2 translated to B. We prove the fol-
lowing improved version of Theorem 5.2. For a partitioned vector x = (x7]...|xL)7,
let x(¢) beaanlvectorWithx;c) =0ifxy =0, andng) =1lifxs#0,f=1,...,F.

THEOREM 5.3. Let the PARALIND decomposition (A%, B®, CQ) be such that
A B C have full column rank, and ¥, ®, 2 have full row rank and no all-zero columns.
Let the columns of B be partitioned as BHb = [B4|...|Br], where IL, is a permu-
tation matriz. If Gi,Ga, Gs have full column rank, and if for any set of vectors

di,...,dp with the same partition as B I, and dgc), ceey d;f) linearly independent,

(53)  rank(Qdiag(® M, d;) ®T) =MP | f=1,... F, implies
’LU’(df)Zl, f=1,...,F,

then B is partially unique with respect to Iy, as defined in Definition 5.1.
Proof. See Appendix B for the proof. d

IWe mean the following. The entries in part f of vector g are randomly sampled from a
continuous probability distribution, and the rank in (5.1) occurs with probability one. This rank
value is equal to the maximal rank over all g; with nonzero entries only in part f.
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The proofs of Theorems 5.2 and 5.3 are in Appendix B, and are similar. Our
proof of Theorem 5.2 is simpler than in [41], since we do not use De Lathauwer’s [10]
equivalence lemma for partitioned matrices.

It can be seen that condition (5.2) implies condition (5.3). Hence, if not only
G but also Gy and G3 have full column rank, then Theorem 5.3 is a relaxation of
Theorem 5.2.

To obtain partial uniqueness conditions for A or (~3, we can define ranks M }1) and
M}B) analogous to (5.1), and interchange the roles of AV, B®, CQ, and G, Go, G,
and M;l), M;Q), M(g) in Theorems 5.2 and 5.3.

5.2. PARALIND partial uniqueness via partitioning in CP. Here, we
discuss a different approach to obtain partial uniqueness results. For a CP decom-
position (A,B,C), Guo et al. [15] proved that if one component matrix, say A, is
unique up to permutation and scaling, then the decomposition can be split up into a
sum of smaller subdecompositions, and the uniqueness properties of B (and C) can be
studied for each subdecomposition separately. Below, we show that in a PARALIND
decomposition (AW, B®, C) this result yields a partial uniqueness condition for B
(or (~3) if A is unique up to permutation and scaling. Let

(5.4) AWIL, = [A]...|AF],
where II, is a permutation matrix. The partition must be such that
(5.5) span(A) = span(A;) @ - - - @ span(Ap)

where @ denotes the direct sum of the subspaces. Hence,

(5.6) span(;&f) N U span(;&g) = {0}, f=1...,F.
g#f

Let B and C be partitioned as
(5.7) B®II, = [By|... Br] and CQIIL, =[Cy|...|CF],

where ;&f, ]§f, and (~3f have the same number of columns, f = 1,..., F. Note that
the same permutation matrix II, is used in (5.4) and (5.7). The subdecompositions
(Af,Bf,Cf) f =1,...,F, are also of PARALIND form. Indeed, we have ;&f
Af v By = Bf Py, and Cf = Cf Q, where Wy, @, and 27 are smaller constraint
matrices. We define A 5 B 75 C ¢ as the subsets of columns of A,B,C, respectively,
that occur in the linear combinations that constitute the columns of A f,B f,C i
Then the constraint matrices Wy, ®, €2 are uniquely defined due to the full column
rank of ;&f,ﬁf,éf.

Next, we formulate our PARALIND partial uniqueness condition for B under
the condition that ¥II, = Ig, ® 17 with 1, a vector of n ones. In that case,
Aj = [af...af] with column a; repeated n times, f =1,..., Ry. Note that F = R,
here.

THEOREM 5.4. Let the PARALIND decomposition (A%, B®, CQ) be such that
K, ]~3~, C have full column rank, and ¥, ®, Q have full row rank and no all-zero columns.
Let A be unique up to permutation and scaling, and let the component matrices be par-
titioned as in (5.4)—~(5.7) for some permutation matriz IL,. Also, let ¥11, = Ir®17.
If there exists a permutation IL, such that BII, = [By|...|Bp], and (20 @p)®T

no
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has full column rank for f =1,...,F, then B is partially unique with respect to I
as defined in Definition 5.1. B B N

Proof. We consider the PARALIND decomposition (AWII,, B®II,, CQIL,). Ac-
cording to Definition 5.1, to prove partial uniqueness of B with respect to I, we should
consider the F' column blocks By, ...,Bg of BII,. Due to the requirement on IT; in
the statement of the theorem, we have

B&®II, = [By|... By
=B, ®,|...|Br &5
= [By|...|Bp]blockdiag(®, ..., ®p)
= BII, blockdiag(®,, ..., ®p).

Since B has full column rank, it follows that ®II, = II, blockdiag(®4,...,®r) =
IT, ®*, where the last equality defines ®*. Hence, we consider the PARALIND de-
composition (AWIL,, BII,®*, CQII,).

We denote an alternative decomposition by (AWII,, BII,®*, CQII,). Equating
the mode-1 matrix unfoldings of the two decompositions yields

(5.9) (BII,&* ® CQIL,) (A¥IL,)” = (BI,®* © COII,) (A¥IL,)”

Since A is unique up to permutation and scaling, it follows that A = ;&HQAQ for some

permutation matrix ITs and nonsingular diagonal matrix Ay = diag(\1,...,AR,).
From the assumed form of WII,, it follows that
(510) A‘I,Ha = ;&((HZAQ) ® 117:) = [)\71'2(1)A7T2(1 | |)‘772(R1)A772(R1)]

where 72 denotes the permutation defined by Ilz. Hence, the permutation and rescal-
mg of the columns of A translates into the permutation and rescaling of the parts A f
of AWII,. Let BII,®* = [B4|...|Br] and CQII, = [Cy]...|CF] be partitioned in
the same way as (5.7). The smaller PARALIND decompositions of each part f for
the original and alternative decomposmons are given by A = A Py, B = B ; Py,
Cf = Cfﬂf, and By = Bf‘I>f, C; = Cfo As in Guo et al. [15, Theorem
3.1], equations (5.9)—(5.10) and the requirement (5.5) imply that (5.9) is equivalent
to equating the decompositions of the F' parts separately:

(5.11) (]§f®6f):&? = (Bﬁ'z(f)QCﬁ?(f)) ()‘77'2(f);&f)T7 f=1...F,

where 7o denotes the inverse of the permutation 7. In terms of the smaller PAR-
ALIND decompositions, (5.11) is written as

(5.12)

(By ®Cy) (25 0 Q)T Af = Bay(p) @ Cap(p) (o) © Qo (1) ¥ Mo () Ap)”
f=1...,F.

Due to the requirement on IT,, we have BII, = [By] ... |By]. Next, we want to apply

Proposition 2.4(ii) to each subdecomposition in (5.12) separately. Therefore, we need
to have the same constraint matrices on both sides of (5.12). This implies that the
permutation ITy must be such that the alternative on the right-hand side of (5.12)
has the same ®; and £ as on the left-hand side of (5.12). Note that due to the

assumed form of WII,, we have ;&f =lay] and ¥y =17,
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For the subset of Il satisfying this requirement, partial uniqueness of BII, =
[B1| .|B r] follows from applying Proposition 2.4(ii) to each subdecomposition in

(5.12) separately. Since A s, By, C; have full column rank, partial uniqueness follows
if (e \Ilf)i*? has full column rank for f=1,..., F. O

_Theorem 5.4 yields a partial uniqueness condition for C by interchanging the roles
of B‘I> and CcQ. Analogously, partial uniqueness conditions can be obtained if not A
but B or C is unique up to permutation and scaling.

The condition on the permutation matrix II; in Theorem 5.4 can be relaxed
to “there exists a permutation IT, such that BII, = [B1Si|...|BrSr], with Sy
nonsingular, f = 1,..., F”. Since this is a more complicated condition, we chose a
simpler formulation of Theorem 5.4.

6. Examples of partial uniqueness in PARALIND. Here, we demonstrate
the improvement when using Theorem 5.3 instead of Theorem 5.2. Also, we show
that whether Theorem 5.3 or Theorem 5.4 is more relaxed depends on the particular
PARALIND decomposition. First, we continue Example 3 and show that partial
uniqueness of B with respect to I, = Ig follows from Theorem 5.4 but not from
Theorems 5.2 and 5.3. In Example 4, we construct a PARALIND decomposition such
that all three matrices A, B, C are not unique up to permutation and scaling. To the
best of our knowledge, this is the first such case in the literature. For this example, we
show that partial uniqueness of B with respect to IT, = I, follows from Theorem 5.3
but not from Theorem 5.2. Since none of A, B, C are unique, Theorem 5.4 cannot be
used. In our examples, we assume that A, B, C have full column rank.

Ezample 3 (continued). We have Ry = 3, Ry = 6, R3 = 4, R = 6, ® = I;,
and ¥ and Q given by (4.9). In Stegeman and de Almeida [41, section 5] it was
verified that A is unique by condition (2.8). Here, we show partial uniqueness of
B = [b1 b2|b3 b4|b5 bg] First, we try Theorem 5.3. We set II;, = Is. It can be
verified that G1, Go, G3 have full column rank. We focus on the matrix

Q1 — Qg 0 0
. T T _ 0 Q3 — Oy 0

(6.1) Qdiag(® " dy) ¥ = 0 0 as—og |
a9 (6%} (675

with dy = (a1 as|as aslas ag)?. It can be seen that the ranks (5.1) are Ml(Q) =
M2(2) = M?Eg) 1. Any three of the following four vectors satisfy condition (5.3):
(1 00 0j0 0)7, (0 0[1 0|0 0)T, (0 0[]0 0|1 0)T, (1 1]1 1|1 1)”. Hence, Theorem 5.3
cannot be used to show partial uniqueness of B with respect to IT, = I (and neither
can Theorem 5.2).

Next, we use the fact that A is unique up to permutation and scaling, and try
Theorem 5.4. We set II, = II, = I, and partition AW as [a; a;]|as aqz|as as), and
CQ as [€1 €4 —¢€1]€a €4 — C2|C3 €4 — €3]. The three PARALIND subdecompositions
are of the same form, with

1 -1
6.2) W;=(11), ®;=1I,, Qf:{o . } f=1,2,3.

Since ;&f = [ay] and éf = [€f €4] have full column rank, f = 1,2,3, and (Qy ©
\Ilf)‘if = Qy has full column rank, f = 1,2,3, the condition of Theorem 5.4 holds

and B = [61 62|B3 B4|B5 66] is partially unique.
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Example 4. Consider the PARALIND decomposition with Ry = 6, Ry = R3 = 4,
R=6, ¥ =14, and

1 -1 0 1 00 110 0 0 0
0 1. 1 -1 0 0 001100
(6.3) ®= 0o 0o 0 0 1 0" = 0 00 O0T1FPO
0 0 0 0 01 0 00001

The six rank-1 terms of the decomposition are
(6.4)

51 Obl O(~31 —I—ézo(f)g—f)l)oél —|—53 0620624—540(61—62)0624—55 063063 —|—56064O(~34 .

The vectors in the last two rank-1 terms do not occur in the first four rank-1 terms.
An alternative for the first four rank-1 terms is as follows:

(6.5) (24, —ay +ag+4a4)0(by —by) o0& + (a; +a3) o (by — (b; —by)) 0 &
4 (a3 +a4) obgo (& — &) +a4 0 ((by — by) — by) o (€ — &1).

Hence, none of ;&, ]§, Cis unique up to permutation and scaling. As a consequence,
we cannot use Theorem 5.4 to obtain partial uniqueness results.

Next, we show partial uniqueness of B = [b; ba|bs|b4] using Theorem 5.3. We
set IT, = I4. It can be verified that G1, G2, G3 have full column rank. We focus on
the matrix

a; az—a; 0 0 0 O
. T r | 0O 0 as ar—as 0 0

(6.6) Qdiag(® " dy) ¥ = 0 0 0 0 as 0 |
0 0 0 0 0 oy

with df = (a1 as|as|as)”. It can be seen that the ranks (5.1) are Ml(Q) = 2 and
M2(2) = M?Eg) = 1. If the matrix in (6.6) should have rank 1, it follows that a; =
as = 0 and only one of a3 and a4 is nonzero. Hence, in condition (5.3), we obtain
ds = (0 0] x |0)T and d3 = (0 0/0]*)7, with corresponding déc) = (0 1 0)T and
d{” = (0 0 1)T. If the matrix in (6.6) should have rank 2, it follows that either
a1 = ag =0 and azay # 0, or ag # 0 or ag # 0 and ag = a4 = 0. Since we need
three linearly independent vectors d;c) in condition (5.3), we obtain d; = (* *[0/0)T

with dgc) = (10 0)7 (where at most one of a; and as is zero). We have w'(dy) = 1
for f =1,2,3, and condition (5.3) holds. Note that the matrix in (6.6) has rank 2 for
d; = (0 0[1]1)7, which shows that condition (5.2) of Theorem 5.2 does not hold.

Analogously, Theorem 5.3 (and not Theorem 5.2) can be used to show partial
uniqueness of C= [€1 €2|C3]€4].

7. Discussion. We have proven improved and more precise variants of the main
PARALIND uniqueness conditions of Stegeman and de Almeida [41]. Our proofs of
the conditions of [41] as well as the new conditions are simpler than the proofs in [41],
since we do not use Kruskal’s [25] permutation lemma (in case of uniqueness up to
permutation and scaling) or De Lathauwer’s [10] equivalence lemma for partitioned
matrices (in case of partial uniqueness). Our condition for uniqueness up to permuta-
tion and scaling in Theorem 2.3 is relatively easy to check by using (symbolic) linear
algebra computation software. The advantage of our uniqueness conditions over those
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of [41] is clearly demonstrated by means of examples from the literature. Also, we
have compared our PARALIND uniqueness conditions to those obtained from the CP
uniqueness conditions of Guo et al. [15]. In the case of uniqueness up to permutation
and scaling, it was verified in [15] that Theorem 2.5 of [15] (for uniqueness of A) is
more relaxed than Theorem 2.2 of [41] when ke and kg are high. This is also true
for our Theorem 2.3. An example where Theorem 2.5 holds but not Theorem 2.3 is
[15, example 2]. On the other hand, our Theorem 2.3 is more relaxed when kg and
kq are low. In the case of partial uniqueness, the examples in section 6 show that
whether our Theorem 5.3 or Theorem 5.4 based on [15] is more relaxed depends on
the particular PARALIND decomposition.

As stated in section 1, our results are proven for real-valued PARALIND decom-
positions. However, the proofs in Appendices A and B can be translated easily to
the complex case, i.e., with complex-valued component matrices and/or complex-
valued constraint matrices. To do this, we must keep in mind that our vectors
live in a complex vector space C™, with inner product < x,y >= y”x and norm
l|x|| = /< x,x >, where  denotes the Hermitian or conjugated transpose. As in

R™, vectors x and y are orthogonal when < x,y >= 0. Also, vectors x1,...,x, € C™
are linearly independent when aq x; + --- 4+ a4 x4, = 0 implies a; = --- = a4 = 0 for
scalars a1, ...,aq € C. Moreover, the determinant of a complex matrix is defined to

be identical to the determinant of a real matrix, and its relation to the matrix rank is
identical. The considerations above imply that, in order to translate our uniqueness
proofs to the complex case, we must replace the ordinary transpose 7 by ¥ where
orthogonality is involved. However, in cases where the transpose is due to the formu-
lation of the decomposition such as in (A.1), the transpose should not be changed.
Theorem 2.5 is proven by [15] for the complex case, and the proof of Theorem 5.4 can
also be translated to the complex case.

Appendix A: Proofs of Theorems 2.2 and 2.3. Here we prove Theorem 2.3
and compare its proof to the proof of Theorem 2.2. The latter proof is different from
[41], since we do not use Kruskal’s [25] permutation lemma here. From the comparison
of the proofs it will be clear that Theorem 2.3 is a refinement of Theorem 2.2.

First, suppose the assumptions of Theorem 2.2 hold. Since A has full column
rank, [41, Lemma 3.4] implies that without loss of generality we may set A = Ig,.
We denote an alternative decomposition by (A\Il, B®, C_JQ)7 where A is an Ry X R;
matrix. Equating the mode-1 matrix unfolding of the PARALIND decomposition (see
(2.2)) to its alternative yields

(A1) B®C)G,=(B®C)G,A”T.

Since B, C, and G have full column rank by assumption, it follows that (B®C) G,
has full column rank. From (A.1) it follows that also (B @ C) G has full column
rank, and that A is nonsingular. We rewrite (A.1) as

(A.2) B®C)G A T=BxC)G,.
We denote the R; columns of A~T as dy,...,dg,. For column j of (A.2) we have
(A.3) (B® 0 CN)¥'d; = (B0 CO)vp,,

with Q,Z;;‘-F denoting row j of ¥. We should pick linearly independent di,...,dg, such
that (A.3) holds. If it follows that A=7 = [d; ... dg,] = ITA, then A = TIA™".
Hence, in that case A =1Ig, would be unique up to permutation and scaling.
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Rewriting (A.3) in J x K matrix form yields
(A.4) B® diag(¥7d;) Q7 C” = B® diag(y)] ) Q7 C” .
Conditions (2.8) and (2.9) are obtained by taking the rank on both sides of (A.4).

Note that when taking the rank of the left-hand side of (A.4), matrices B and C can
be left out since they have full column rank by assumption. In case of condition (2.8)

we obtain
rank(® diag(¥”d;) Q7) = rank(B® diag(v] ) 2" C7)

< rank(® diag(¢] ) Q")
(A.5) ;
=N )

[Imm] < max(Nl(l), . ,NI({,/l1 ).

If (A.5) implies w(d;) = 1, then the linearly independent dy,...,dr, are necessarily
permuted and rescaled versions of the columns of A=1 R,- This completes the proof
of Theorem 2.2. o

To prove Theorem 2.3, we proceed as follows. Since Gy, Gz and A, B, C have
full column rank, it follows from Proposition 2.4 that also B and C have full column
rank. Hence, we can delete B, C from (A.5). The rank equality in condition (2.9) is
obtained as

(A.6) rank(® diag(¥7d;) Q7) = rank(® diag(y]) @7) = N,

This completes the proof of Theorem 2.3. If the conditions of Theorem 2.3 hold,

then condition (2.9) is a relaxation of condition (2.8) because the inequality N;l) <

1)

max(N; 7/, ..., NI(%11)) is left out in the former.

Appendix B: Proofs of Theorems 5.2 and 5.3. We proceed analogous to the
proofs of Theorems 2.2 and 2.3 in Appendix A. Our proof of Theorem 5.3 is different
from [41], since we do not use the equivalence lemma for partitioned matrices of De
Lathauwer [10] here.

First, suppose the assumptions of Theorem 5.2 hold. We consider the PARALIND
decomposition (AW, (BII,)(IIf &), CQ), and denote an alternative by (AW, (BIL,) -
(TI7®), CN). Analogous to Appendix A, we set BTI, = I, without loss of generality,
and we equate the mode-2 matrix unfolding of the PARALIND decomposition (see
(2.3)) to its alternative:

(B.1) (CQoAw)®TII, = (CQo Aw) T IL, 11} BT .
As in Appendix A, it follows that B is nonsingular, and that (CQ © A¥)®” has
full column rank. Let ny denote the number of columns in part B¢, f =1,..., F.

Then Zf;l ny = Ry. Let (BIL,)"7T = B-TII, = [Bi]...|Br], where the columns
of B 7 are orthogonal to all parts of BII, except part f. Then B ¢ has ny columns,
f=1,...,F. Note that partial uniqueness of B with respect to II; follows if column
xg-f) of By satisfies w’ (X;f)) = 1 and is not orthogonal to part B, (s for a permutation
m(),j=1,...np f=1,... F.

Let the vector dy € span(By) be generic, i.e., df = By h for a generic vector

h. Then the vector gy = HEBT d; has nonzero (and generic) entries only in part f,
which implies w'(gs) = w'(IIT BT dy) = 1. We write
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(B.2) (CQeAD)®TII,d; = (CQ O AD)®T 11, g/ .
Rewriting (B.2) in K x I matrix form yields
(B.3) CQ diag(®" 10, df) ®TAT = CQ diag(®T 11, gf) $TAT .

Conditions (5.2) and (5.3) are obtained by taking the rank on both sides of (B.3).
Note that when taking the rank of the left-hand side of (B.3), matrices A and C can
be left out since they have full column rank by assumption. In case of condition (5.2)
we have

rank(Q diag(®7 11, d ;) ¥7) = rank(CQ diag(®” 11, g;) TTAT)
< rank(Q diag(® 11, g ;) ¥7T)

—
= M;

< maX(Ml(Q), e ,M;,Q)) .

According to condition (5.2), this implies w'(d¢) = 1. Since dy = ]§f h for a generic

vector h, it follows that all columns x§f ) of B 7 satisfy w’ (X§f )) =1 and they are not

orthogonal to the same part B,. The reasoning above holds for any part f of B=7TI,.
Since the latter is nonsingular, we obtain that B=TTI, = blockdiag(Sl_T7 e S;T) 11,
where block S¢ (ny x ny) is nonsingular, f = 1,...,F, and II is a block permuta-
tion matrix. This implies BII, = blockdiag(S1, ..., Sy) II, which shows that B is
partially unique with respect to II, as in Definition 5.1. This completes the proof of
Theorem 5.2. o

To prove Theorem 5.3, we proceed as follows. Since Gi,G3 and A, B, C have
full column rank, it follows from Proposition 2.4 that also A and C have full column
rank. Hence, we can delete A, C from (B.4). The rank equality in condition (5.3) is
obtained as

(B.5) rank(Q diag(®7IL, d;) ©7) = rank(Q diag(®7 1L, g;) ¥7) = M.

Now the vector dy corresponds to the rank M }2). Hence, we may have a different
condition for different f. If this implies w'(ds) = 1 for each f, then we have partial
uniqueness of B with respect to II; as explained above. The linear independence of
the vectors dgc), . .dgﬁ) corresponds to the nonsingularity of B=7TI, = [By|...|Bx].
This completes the proof of Theorem 5.3. If the conditions of Theorem 5.3 hold,
then condition (5.3) is a relaxation of condition (5.2) because the inequality M }2) <

max(Ml(Q), cee MI(DQ)) is left out in the former.
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