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Abstract. In this paper, we derive improved uniqueness conditions for a constrained version of
the canonical order-3 tensor decomposition, also known as Candecomp/Parafac (CP). CP decomposes
a three-way array into a prespecified number of outer product arrays. The constraint is that some
vectors forming the outer product arrays are linearly dependent according to a prespecified pattern.
This is known as the PARALIND family of decompositions. We provide both uniqueness conditions
and partial uniqueness conditions for PARALIND, and show that these are improved and more
precise variants of existing conditions. Our results are illustrated by means of examples.
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1. Introduction. Tensors of order 3 are defined on the outer product of three
linear spaces, T�, � = 1, 2, 3. Once bases of spaces T� are fixed, they can be represented
by three-way arrays. For simplicity, tensors are usually assimilated with their array
representation.

The canonical order-3 tensor decomposition is of the form

(1.1) X =

R∑
r=1

(ar ◦ br ◦ cr) ,

where X is an I × J ×K tensor (or array), ar (I × 1), br (J × 1), and cr (K × 1)
are vectors, and ◦ denotes the outer vector product. For vectors a,b, c, the outer
vector product a ◦ b ◦ c is an order-3 tensor with entries aibjck. We refer to X in
(1.1) as having three modes. The entry xijk of X is the entry in row i, column j,
and frontal slice k. Let A = [a1 . . . aR], B = [b1 . . .bR], and C = [c1 . . . cR] denote
the component matrices. We denote an order-3 decomposition (1.1) as (A,B,C).
Note that when the modes of X are permuted in (1.1), the component matrices are
permuted identically.

An order-3 tensor has rank 1 if it can be written as the outer product of three
vectors. The rank of an order-3 tensor X is defined as the smallest number of rank-
1 tensors whose sum equals X. Hence, (1.1) decomposes X into R rank-1 terms.
Hitchcock [17], [18] introduced tensor rank and the related tensor decomposition (1.1),
also for order n ≥ 3. The same decomposition was proposed independently by Carroll
and Chang [5] and Harshman [16] for component analysis of tensors. They named it
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IMPROVED PARALIND UNIQUENESS CONDITIONS 1251

Candecomp and Parafac, respectively, and we refer to (1.1) as the Candecomp/Parafac
(CP) decomposition.

For a given order-3 tensor and number R of rank-1 components, a best-fitting
decomposition (1.1) is usually found by an iterative algorithm. The most well-known
algorithm is alternating least squares. A comparison of algorithms can be found
in Tomasi and Bro [43]. Note that a best-fitting decomposition is a best rank-R
approximation of the tensor.

For later use, we mention that the CP decomposition (1.1) is a special case of the
Tucker3 decomposition [44]. The latter is defined as

(1.2) X =

R∑
r=1

P∑
p=1

Q∑
q=1

grpq (ar ◦ bp ◦ cq) .

Clearly, the case with R = P = Q and grpq = 0 if (r, p, q) �= (r, r, r) yields (1.1). The
R × P × Q array G with entries grpq is referred to as the core array. In Tucker3,
the matrices A = [a1 . . .aR], B = [b1 . . .bP ], and C = [c1 . . . cQ] are the component
matrices.

CP and Tucker3 can be seen as generalizations of principal component analysis
for matrices. They can be used for exploratory component analysis of three-way
data. Such (real-valued) applications of CP and Tucker3 occur in psychology [24]
[21] and chemometrics [33]. Complex-valued CP is used in, e.g., signal processing
and telecommunications research [30], [31], [12]. Here, the decompositions are mostly
used to separate signal sources from an observed mixture of signals. CP of order 4
describes the basic structure of fourth-order cumulants of multivariate data on which
many algebraic methods for independent component analysis (ICA) are based [6],
[8], [11], [7]. A general overview of applications of CP and Tucker3 can be found in
[22], [1].

A potential problem of computing a best-fitting CP decomposition (1.1) is that
an optimal solution may not exist. Indeed, a tensor may not have a best rank-R
approximation. This is due to the fact that the set of tensors of rank at most R is
not closed for R ≥ 2; see [14]. In such cases, diverging components (i.e., close to
linear dependence and large in magnitude) occur while running an iterative algorithm
designed to find a best rank-R approximation; see [26], [23], [34], [35]. This problem
can be fixed by including interaction terms in the CP decomposition [40], [28], [38].

An attractive feature of the CP decomposition (1.1) is that the component ma-
trices are unique up to a simultaneous column permutation and columnwise rescaling
under relatively mild conditions. Formally we define uniqueness up to permutation
and scaling of (A,B,C) as follows.

Definition 1.1. The CP decomposition (A,B,C) is called unique up to permu-
tation and scaling if any alternative decomposition (Ā, B̄, C̄) satisfies Ā = AΠΛa,
B̄ = BΠΛb, and C̄ = CΠΛc, with Π an R×R permutation matrix, and Λa,Λb,Λc

nonsingular diagonal matrices such that ΛaΛbΛc = IR.
Hence, a CP decomposition (1.1) is unique up to permutation and scaling if the

only ambiguities it contains are the permutation of the R rank-1 components, and
the scaling of the three vectors constituting each rank-1 component.

The classical uniqueness condition for CP is due to Kruskal [25]. Kruskal’s condi-
tion relies on a particular concept of matrix rank that he introduced, which has been
named k-rank after him. Specifically, the k-rank of a matrix is the largest number x
such that every subset of x columns of the matrix is linearly independent. We denote
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1252 ALWIN STEGEMAN AND TAM T. T. LAM

the k-rank of a matrix A as kA. For a CP decomposition (A,B,C), Kruskal [25]
proved that

(1.3) 2R+ 2 ≤ kA + kB + kC

is a sufficient condition for uniqueness up to permutation and scaling. A more con-
densed and accessible proof of (1.3) was given by Stegeman and Sidiropoulos [39]. See
Rhodes [27] for a different approach. Kruskal’s uniqueness condition was generalized
to order n ≥ 3 by Sidiropoulos and Bro [29].

The (mode-3) matrix unfolding of the CP decomposition (A,B,C) is given by

(1.4) (A�B)CT ,

where � denotes the (columnwise) Khatri–Rao product: (A�B) = [a1⊗b1 . . . aR⊗
bR], with ⊗ denoting the Kronecker product.

Less restrictive uniqueness conditions than (1.3) have been obtained for the case
where (at least) one of the component matrices has full column rank; i.e., the vectors in
(at least) one mode j are linearly independent. In this case, the uniqueness condition
does not depend on component matrix j. Moreover, alternative decompositions are
found only in the column space of the Khatri–Rao product of all component matrices
except the jth one. See Jiang and Sidiropoulos [19] (order 3), De Lathauwer [9] (order
3 and 4), and Stegeman [36] (order 3). See Stegeman [37] for a generalization to order
n ≥ 3.

In this paper, we consider uniqueness conditions for order-3 CP with linear de-
pendencies in the columns of the component matrices A,B,C. In particular, the
patterns of the linear dependencies are known and fixed. This type of decomposi-
tion is introduced in Bro et al. [4], and is named PARALIND (parallel profiles with
linear dependencies). Instead of (A,B,C), a PARALIND decomposition is given by

(ÃΨ, B̃Φ, C̃Ω), where Ã is I × R1, B̃ is J × R2, C̃ is K × R3, Ψ is R1 × R, Φ is
R2 × R, and Ω is R3 × R. The matrices Ψ, Φ, and Ω are fixed and contain the
patterns of linear dependency of the columns of ÃΨ, B̃Φ, and C̃Ω, respectively. We
refer to Ψ, Φ, and Ω as the constraint matrices.

Throughout, we assume Ã, B̃, C̃ to have full column rank, and Ψ, Φ, Ω to have
full row rank. In other cases, the PARALIND decomposition has a superfluous factor.
Indeed, suppose rank(Ã) < R1, and Ãd = 0. Then ÃΨ = (ÃD)(D−1Ψ), with D

nonsingular such that ÃD = [ã1 . . . ãp−1 0 ãp+1 . . . ãR1 ] for some column p (vector
d is the pth column of D). Hence, the PARALIND decomposition is equivalent to

a PARALIND decomposition in which Ã is replaced by [ã1 . . . ãp−1 ãp+1 . . . ãR1 ],
and Ψ is replaced by D−1Ψ with its pth row deleted. It can be shown analogously
that the PARALIND decomposition has a superfluous factor if one of Ψ, Φ, Ω does
not have full row rank. We also assume that Ψ, Φ, Ω do not contain all-zero columns,
which guarantees R rank-1 terms in the PARALIND decomposition.

In Bro et al. [4], PARALIND decompositions are used to analyze flow injection
data and fluorescence data. In de Almeida, Favier, and Mota [2], [3] PARALIND
decompositions are used to model multiple-antenna transmissions in the context of
wireless telecommunications and signal processing. Related works in signal processing
are [32], [13]. In [3], the constraint matrices Ψ,Φ,Ω have columns from the Rj ×Rj

identity matrix, j = 1, 2, 3. This form of PARALIND is called CONFAC (constrained
factors) by [3].

For a given data array and constraint matrices Ψ,Φ,Ω, the best-fitting PAR-
ALIND component matrices Ã, B̃, C̃ can be found using a similar alternating least
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squares algorithm as can be used for the CP decomposition; see [4] and [3]. As for CP,
there may not be an optimal solution for a particular PARALIND decomposition.

As an example of PARALIND, let R1 = R2 = R3 = 3, R = 4, and
(1.5)

Ψ =

⎡
⎣ 1 0 0 1

0 1 0 0
0 0 1 0

⎤
⎦ , Φ =

⎡
⎣ 1 0 0 0

0 1 0 1
0 0 1 0

⎤
⎦ , Ω =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 1

⎤
⎦ .

We have ÃΨ = [ã1 ã2 ã3 ã1], B̃Φ = [b̃1 b̃2 b̃3 b̃2], and C̃Ω = [c̃1 c̃2 c̃3 c̃3]. The
rank-1 terms of the PARALIND decomposition are given by

(1.6) (ã1 ◦ b̃1 ◦ c̃1) + (ã2 ◦ b̃2 ◦ c̃2) + (ã3 ◦ b̃3 ◦ c̃3) + (ã1 ◦ b̃2 ◦ c̃3) .

As shown by [3], a PARALIND decomposition can be written as a Tucker3 decompo-
sition with a constrained R1 ×R2 ×R3 core array

(1.7) G =

R∑
r=1

(ψr ◦ φr ◦ ωr) ,

where ψr, φr, and ωr are the rth columns of Ψ, Φ, and Ω, respectively. Hence, the
core array G satisfies a CP decomposition with component matrices Ψ, Φ, Ω. Con-
strained Tucker3 models have applications in chemometrics; see [33]. In the example
(1.5)–(1.6), the Tucker3 core is 3× 3× 3 with frontal slices

(1.8)

⎡
⎣ 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤
⎦ .

A systematic treatment of uniqueness properties of the PARALIND component ma-
trices Ã, B̃, C̃ is presented in Stegeman and de Almeida [41]. The uniqueness property
is considered for each component matrix separately. A distinction is made between
uniqueness up to permutation and scaling and partial uniqueness. For CP, the term
partial uniqueness has been used to describe cases where some columns of a compo-
nent matrix are identified up to their linear span only, or where only a finite number
of alternative CP solutions are available (up to permutation and scaling); see Ten

Berge [42]. For PARALIND, we adopt the first definition, and we call Ã partially
unique if its columns can be partitioned into disjoint subsets and each subset is iden-
tified up to its linear span. The same definition is used by Bro et al. [4] and by [41].
Results on partial uniqueness for CP or PARALIND have been mostly ad hoc. The
only systematic approach is found in [41], and in this paper. The analysis of [41] is
based on the approach of Jiang and Sidiropoulos [19] for CP with full column rank
in (at least) one mode. Below, we show that the idea of Guo et al. [15] to study CP
uniqueness by splitting up a CP decomposition into smaller decompositions when one
component matrix is unique up to permutation and scaling can also be used to obtain
partial uniqueness results for PARALIND.

In this paper, we present improved and more precise variants of the main PAR-
ALIND uniqueness conditions of [41]. We reprove the uniqueness conditions of [41]
using simpler proofs, and show that our improved uniqueness conditions follow natu-
rally from these proofs. The reason why the proofs are simpler is because we do not
use Kruskal’s [25] permutation lemma (in case of uniqueness up to permutation and
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1254 ALWIN STEGEMAN AND TAM T. T. LAM

scaling) or De Lathauwer’s [10] equivalence lemma for partitioned matrices (in case
of partial uniqueness). Our uniqueness conditions are relatively easy to check with
the use of (symbolic) linear algebra computation software, and the improvement with
respect to the results of [41] is demonstrated by means of examples.

A different approach to obtain conditions for PARALIND uniqueness (up to per-
mutation and scaling) is via the Kruskal-type uniqueness results of [15] for CP with
proportional vectors in one mode. We also compare our uniqueness conditions with
those obtained via the approach of [15] for CP. Our examples show that it depends
on the particular PARALIND decomposition which type of uniqueness condition is
more powerful or appropriate.

In applications of PARALIND decompositions, the component matrices can be
real-valued [4] or complex-valued [2], [3]. To the best of our knowledge, in all PAR-
ALIND applications the constraint matrices are real-valued. Our results and those in
[41] are proven for real component matrices. However, they can be translated easily
to the complex case. We will elaborate on this in the discussion section at the end of
this paper.

This paper is organized as follows. Section 2 states conditions for uniqueness up
to permutation and scaling of one PARALIND component matrix, and includes our
improved condition. Section 3 explains how our PARALIND uniqueness condition
can be checked more easily with the help of (symbolic) linear algebra computation
software. Section 4 contains examples in which we apply the uniqueness conditions of
section 2. In section 5 we present partial uniqueness conditions for one PARALIND
component matrix, including our improved condition. These conditions are applied
in the examples contained in section 6. Finally, section 7 contains a discussion of our
findings.

2. Uniqueness conditions for PARALIND. Here, we present conditions for
uniqueness up to permutation and scaling of one PARALIND component matrix.
Due to the linear dependencies in the columns of ÃΨ, B̃Φ, and C̃Ω, there is less
freedom of scaling/counterscaling in the vectors constituting each rank-1 term than

there is in CP. Also, jointly permuting the order of the columns of Ã, B̃, C̃ may result
in a PARALIND decomposition with different constraint matrices. To avoid these
complications, uniqueness in PARALIND is considered for each component matrix
separately. See [41, section 3] for more details. We define uniqueness up to permuta-
tion and scaling of a PARALIND component matrix as follows.

Definition 2.1. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such

that Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero
columns. The component matrix Ã is called unique up to permutation and scaling
if any alternative decomposition (ĀΨ, B̄Φ, C̄Ω) satisfies Ā = ÃΠΛa, with Π an
R1 ×R1 permutation matrix, and Λa a nonsingular diagonal matrix.

In section 2.1, we state the uniqueness condition for one PARALIND component
matrix of Stegeman and de Almeida [41] and our improved version of it. In section 2.2,
we state a PARALIND uniqueness condition derived from a CP uniqueness condition
of Guo et al. [15].

2.1. Uniqueness conditions for one PARALIND component matrix. Be-
fore we present the PARALIND uniqueness result of Stegeman and de Almeida [41],
we define three matrix unfoldings of a PARALIND decomposition. Let

(2.1) G1 = (Φ�Ω)ΨT , G2 = (Ω�Ψ)ΦT , G3 = (Ψ�Φ)ΩT .
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The mode-1 matrix unfolding of the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) is
defined as

(2.2) (B̃Φ� C̃Ω) (ÃΨ)T = (B̃⊗ C̃)G1 Ã
T .

Its mode-2 matrix unfolding is defined as

(2.3) (C̃Ω� ÃΨ) (B̃Φ)T = (C̃⊗ Ã)G2 B̃
T ,

and its mode-3 matrix unfolding is defined as

(2.4) (ÃΨ� B̃Φ) (C̃Ω)T = (Ã⊗ B̃)G3 C̃
T .

Stegeman and de Almeida [41] prove the following PARALIND uniqueness condition.
Let

N
(1)
j = rank(Φ diag(ψT

j )Ω
T ) , j = 1, . . . , R1 ,(2.5)

N
(2)
j = rank(Ω diag(φT

j )Ψ
T ) , j = 1, . . . , R2 ,(2.6)

N
(3)
j = rank(Ψdiag(ωT

j )Φ
T ) , j = 1, . . . , R3 ,(2.7)

where ψT
j denotes row j of Ψ, φT

j denotes row j of Φ, and ωT
j denotes row j of Ω.

Let w(·) denote the number of nonzero entries of a vector.

Theorem 2.2. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such that

Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero columns.
The component matrix Ã is unique up to permutation and scaling if G1 has full col-
umn rank, and if for any nonzero vector d,

(2.8) rank(Φ diag(ΨTd)ΩT ) ≤ max(N
(1)
1 , . . . , N

(1)
R1

) implies w(d) = 1 .

Proof. See Stegeman and de Almeida [41, section 4.1]. See Appendix A for a
simpler proof.

For uniqueness of Ã it is necessary that G1 has full column rank; see [41, section
4.2]. Our improved version of Theorem 2.2 is as follows.

Theorem 2.3. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such that

Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero columns.
The component matrix Ã is unique up to permutation and scaling if G1,G2,G3 have
full column rank, and if for any set of R1 linearly independent vectors d1, . . . ,dR1 ,

rank(Φ diag(ΨTdj)Ω
T ) = N

(1)
j , j = 1, . . . , R1 , implies(2.9)

w(dj) = 1 , j = 1, . . . , R1 .

Proof. See Appendix A for the proof.
The proofs of Theorems 2.2 and 2.3 are in Appendix A. Our proof of Theorem 2.2

is simpler than the one given in [41], since we do not use Kruskal’s [25] permutation
lemma.

It can be seen that condition (2.8) implies condition (2.9). Hence, if not only
G1 but also G2 and G3 have full column rank, then Theorem 2.3 is a relaxation of
Theorem 2.2. As we will see in section 4, cases for which condition (2.9) holds but
not condition (2.8) are easy to find in the literature.
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By interchanging the roles of ÃΨ, B̃Φ, and C̃Ω in Theorems 2.2 and 2.3, con-
ditions for uniqueness of B̃ and C̃ can be obtained. The roles of G1,G2,G3 and

N
(1)
j , N

(2)
j , N

(3)
j must be interchanged correspondingly.

For later use, we state the following result.
Proposition 2.4. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such

that Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero
columns. Moreover, let the PARALIND decomposition have alternative (ĀΨ, B̄Φ, C̄Ω)
with the same residuals.

(i) If G1 has full column rank, then Ā = Ã S for some nonsingular matrix S.

(ii) If G2 has full column rank, then B̄ = B̃T for some nonsingular matrix T.

(iii) If G3 has full column rank, then C̄ = C̃U for some nonsingular matrix U.
Proof. See de Almeida, Favier, and Mota [3], or Stegeman and de Almeida [41,

Proposition 3.3].

2.2. PARALIND uniqueness via CP uniqueness. Since a PARALIND de-
composition (ÃΨ, B̃Φ, C̃Ω) is a constrained CP decomposition, one might wonder
whether CP uniqueness conditions can be used to prove the uniqueness of a PAR-
ALIND component matrix. The following example shows that CP uniqueness of ÃΨ
does not always imply uniqueness of Ã in PARALIND. Let Φ = Ω = I3 and

(2.10) Ψ =

[
1 0 1
0 1 1

]
.

Let Ã, B̃, C̃ have full column rank. The decomposition (ÃΨ, B̃, C̃), interpreted as a
CP decomposition, is unique up to permutation and scaling since it satisfies Kruskal’s
uniqueness condition (1.3). The question is whether this implies that matrix Ã is

unique up to permutation and scaling in the PARALIND decomposition (ÃΨ, B̃, C̃).
Let an alternative PARALIND decomposition be given by (ĀΨ, B̄, C̄). From the

CP uniqueness, it follows that ĀΨ = ÃΨΠΛ, with Π a 3 × 3 permutation matrix,
and Λ a nonsingular 3 × 3 diagonal matrix. If PARALIND uniqueness of Ã holds,
then this should imply Ā = ÃΠ2Λ2, with Π2 a 2× 2 permutation matrix, and Λ2 a
nonsingular 2× 2 diagonal matrix. However, the following example shows that this is
not true. Let
(2.11)

Ã =

[
1 0
0 1

]
, Π =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ , Λ =

⎡
⎣ 1 0 0

0 −1 0
0 0 −1

⎤
⎦ , Ā =

[
0 −1
1 −1

]
.

Then it follows that

(2.12) ĀΨ = ÃΨΠΛ =

[
0 −1 −1
1 −1 0

]
.

But the columns of Ã and Ā are not equal up to permutation and scaling. Hence,
matrix Ã is not unique in the PARALIND decomposition (ÃΨ, B̃, C̃) while the de-
composition is unique when interpreted as a CP decomposition.

In general, for a decomposition (ÃΨ, B̃Φ, C̃Ω), PARALIND uniqueness of Ã

does follow from CP uniqueness of ÃΨ if Ψ contains only columns of the R1 × R1

identity matrix. In that case, the equality ĀΨ = ÃΨΠΛ implies that the columns of
Ā are rescaled versions of the columns of Ã. Since Ã has full column rank, it follows
from
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(2.13) Ã = ĀΨΛ−1ΠTΨT (ΨΨT )−1

that also Ā has full column rank. Therefore, the relations between the columns of Ã
and Ā are one-to-one, and we have Ā = ÃΠ2Λ2 for some permutation matrix Π2

and a nonsingular diagonal matrix Λ2.
We use this fact to obtain PARALIND uniqueness conditions for Ã from the

Kruskal-type CP uniqueness conditions by Guo et al. [15] for ÃΨ with k
˜AΨ = 1.

Theorem 2.5. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such that

Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero columns.
Also, let Ψ contain only columns of the R1×R1 identity matrix, and let R1 < R. The
component matrix Ã is unique up to permutation and scaling if one of the following
holds:

(i) rank(Ψ) + kΦ + kΩ ≥ 2R+ 2 ,
(ii) kΦ < rank(Φ), kΩ < rank(Ω), rank(Ψ) + kΦ + kΩ ≥ 2R+ 1 ,
(iii) rank(Ψ) + kΦ + kΩ +max(rank(Φ)− kΦ, rank(Ω)− kΩ) ≥ 2R+ 2,

rank(Ψ) + min(kΦ, kΩ) ≥ R+ 2 .
Proof. Guo et al. [15, Theorems 2.1, 2.2, 2.3] show that conditions (i)–(iii)

are sufficient for CP uniqueness up to permutation and scaling of ÃΨ in the CP
decomposition (ÃΨ, B̃Φ, C̃Ω). Note that matrices Ã, B̃, C̃ drop from conditions (i)–
(iii) since they have full column rank. As argued above, the conditions on Ψ allow

the CP uniqueness of ÃΨ to be translated to PARALIND uniqueness of Ã.
It was established in [15] that if Ã, B̃, C̃ have full column rank, then the con-

ditions of Theorem 2.5 are weaker than the ones of Theorem 2.2 when kΦ and kΩ
are sufficiently large. The conditions of Theorem 2.5 are stronger than the ones of
Theorem 2.2 for lower values of kΦ and kΩ.

3. How to check condition (2.9). Here, we discuss how condition (2.9) can be

checked using (symbolic) linear algebra software. For each distinct value of N
(1)
j , we

should determine the linearly independent vectors dj satisfying (2.9). We start with

the case N
(1)
j = 1. A matrix has rank 1 if all its 2× 2 submatrices have determinant

zero, i.e., if all its 2 × 2 minors are zero. Let dj = (α1 . . . αR1)
T . Each entry of

Φ diag(ΨTdj)Ω
T is a linear function of α1, . . . , αR1 with no constant term. As a

result, a 2× 2 minor of Φ diag(ΨTdj)Ω
T is a second degree homogenous polynomial

in α1, . . . , αR1 , or it is zero. The matrix Φ diag(ΨTdj)Ω
T has size R2 ×R3. Hence,

there are R2(R2−1)R3(R3−1)/4 determinants to check. Using symbolic computation
software, we can write this as the linear system

(3.1) U(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1α2

...
αR1−1αR1

α2
1
...

α2
R1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 ,

where the matrix U(1) has R2(R2 − 1)R3(R3 − 1)/4 rows and R1(R1 +1)/2 columns.
Each row in (3.1) corresponds to a distinct 2 × 2 minor. To obtain solutions for
α1, . . . , αR1 , we can analyze the right null space of U(1). For example, the MATLAB
command null(U1,’r’) yields basis vectors for the right null space ofU(1) containing
a lot of zero entries. If all basis vectors have zeros in the first R1(R1 − 1)/2 entries,
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1258 ALWIN STEGEMAN AND TAM T. T. LAM

then αsαt = 0 for s �= t. This implies w(dj) ≤ 1. Analogously, the last R1 entries of
the basis vectors may be checked to obtain constraints of the form α2

s = 0. Note that

(3.2) Φ diag(ΨTdj)Ω
T =

R1∑
s=1

αs (Φ diag(ψT
s )Ω

T ) .

Hence, if N
(1)
s = rank(Φ diag(ψT

s )Ω
T ) = 1, then the term α2

s does not occur in the
2× 2 minors of the matrix Φ diag(ΨTdj)Ω

T .

For N
(1)
j = 2, condition (2.9) can be checked in the same way as above. Now

all 3 × 3 minors of Φ diag(ΨTdj)Ω
T should be zero. Each minor is a third degree

homogenous polynomial in α1, . . . , αR1 , or it is zero. Analogous to (3.1), we may
build the linear system

(3.3) U(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1α2α3

...
αR1−2αR1−1αR1

α2
1α2

...
α2
R1

αR1−1

α3
1
...

α3
R1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 .

The right null space of U(2) may be analyzed to obtain solutions for α1, . . . , αR1 . It

follows from (3.2) that the term α3
s does not occur in the 3 × 3 minors if N

(1)
s ≤ 2.

Also, the terms α2
sαt, s �= t, do not occur if N

(1)
s = 1.

For N
(1)
j ≥ 3, an analogous method can be used. Whether or not it is convenient

to analyze the minors of Φ diag(ΨTdj)Ω
T by means of the linear systems as above,

or by writing out the minors, will depend on the complexity of the constraint matrices

Ψ,Φ,Ω. When the values of N
(1)
j are low and the constraint matrices contain many

zero entries, building the complete linear system as above may not be convenient.
This will become clear in the examples in the next section. Also, we will see that

the constraints imposed on dj by condition (2.9) for low N
(1)
j may imply additional

constraints on dj for higher N
(1)
j . This is because the vectors d1, . . . ,dR1 should be

linearly independent.

4. Examples of uniqueness in PARALIND. Here, we demonstrate the im-
provement when using Theorem 2.3 instead of Theorem 2.2. Also, the examples
show that Theorem 2.3 may imply uniqueness in cases where Theorem 2.5 does not.
In Example 1, matrix Ã is unique by Theorem 2.5 and Theorem 2.3 but not by
Theorem 2.2. In Example 2, we prove the uniqueness of Ã, B̃, C̃ by means of
Theorem 2.3 and some further analysis. Theorems 2.2 and 2.5 cannot be used for
this. In Example 3, we show that the particular form of alternatives C̄ for C̃ = I4 can
be understood by using Theorem 2.3. This is not the case for Theorem 2.2. To sum
up, our examples demonstrate that Theorem 2.3 yields more insight into PARALIND
uniqueness and the forms of alternative decompositions than Theorem 2.2. In our
examples, we assume that Ã, B̃, C̃ have full column rank.
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Example 1. This example is taken from Guo et al. [15, Example 1]. We have
R1 = R2 = R3 = 5, R = 6, and

(4.1) Ψ = [I5 e] , Φ = [I5 f ] , Ω = [I5 g] ,

where e = (0 0 0 0 1)T , f = (1 1 1 1 1)T , and g = (1 1 1 1 0)T . Since rank(Ψ) = 5,

kΦ = 5, and kΩ = 4, matrix Ã is unique up to permutation and scaling by Theorem 2.5
(i). In [15] it was verified that condition (2.8) of Theorem 2.2 does not hold. Next,
we show that condition (2.9) of the new Theorem 2.3 does hold.

We leave it to the reader to verify that G1,G2,G3 have full column rank, and

that N
(1)
1 = N

(1)
2 = N

(1)
3 = N

(1)
4 = 1 and N

(1)
5 = 2. First, we check condition (2.9)

for N
(1)
j = 1. We have

(4.2) Φ diag(ΨTdj)Ω
T =

⎡
⎢⎢⎢⎢⎣

α1 + α5 α5 α5 α5 0
α5 α2 + α5 α5 α5 0
α5 α5 α3 + α5 α5 0
α5 α5 α5 α4 + α5 0
α5 α5 α5 α5 α5

⎤
⎥⎥⎥⎥⎦ ,

with dj = (α1 α2 α3 α4 α5)
T . By using symbolic computations in MATLAB, we con-

struct the matrix U(1) in (3.1) from the distinct 2 × 2 minors of Φ diag(ΨTdj)Ω
T .

Analyzing the right null space of U(1) with the MATLAB command null(U1,’r’)

yields the following constraints: αsαt = 0, s �= t, and α2
5 = 0. Since N

(1)
1 = N

(1)
2 =

N
(1)
3 = N

(1)
4 = 1, we need to pick four linearly independent vectors d1, . . . ,d4 satis-

fying these constraints. Each vector can have at most one nonzero entry, and the last
(fifth) entry is zero in all four vectors, which implies that d1, . . . ,d4 are equal to the
first four columns of I5 up to permutation and scaling.

The case N
(1)
j = 2 corresponds to a fifth vector d5. Since d1, . . . ,d4 have their

fifth (last) entry equal to zero, it follows that α5 �= 0 in d5 in order to have five
linearly independent vectors d1, . . . ,d5. We denote a 3×3 minor of Φ diag(ΨTdj)Ω

T

as M(uvw,xyz), where rows u, v, w and columns x, y, z are included. We have
(4.3)
M(125,145) = α1α

2
5 , M(235,245) = α2α

2
5 , M(235,345) = −α3α

2
5 , M(345,245) = α4α

2
5 .

Since α5 �= 0, it follows that α1 = α2 = α3 = α4 = 0. Hence, vector d5 is equal to the
fifth column of I5 up to scaling. This implies that [d1 . . . d5] = ΠΛ, and condition
(2.9) holds.

Example 2. The next example is taken from [41, section 8]. Let R1 = R2 = R3 =
3, let R = 4, and let Ψ,Φ,Ω be given by (1.5). In [41] it is claimed that uniqueness

of Ã, B̃, C̃ follows from rewriting the PARALIND decomposition as Tucker3 with
core (1.7) and applying a result from Kiers, Ten Berge, and Rocci [20] on Tucker3
uniqueness. This claim is false, however. The result from [20] does not allow certain
Tucker3 core entries to be set to zero, which is done in this choice of (Ψ,Φ,Ω)
(equation (1.8) gives the core array for this example). However, by using Theorem 2.3

and some further analysis, we show that matrices Ã, B̃, C̃ are indeed unique up to
permutation and scaling. Theorem 2.2 cannot be used for this.

First, we consider uniqueness of Ã. We have rank(Ψ) = 3, kΦ = 1, and kΩ = 1.
Conditions (i)–(iii) of Theorem 2.5 do not hold. Next, we consider condition (2.8)
of Theorem 2.2. It can be verified that G1,G2,G3 have full column rank, and that

N
(1)
1 = 2 and N

(1)
2 = N

(1)
3 = 1. We have
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1260 ALWIN STEGEMAN AND TAM T. T. LAM

(4.4) Φ diag(ΨTdj)Ω
T =

⎡
⎣ α1 0 0

0 α2 α1

0 0 α3

⎤
⎦ ,

with dj = (α1 α2 α3)
T . Since this matrix has rank 2 if α1 �= 0, α2 �= 0, and α3 = 0,

condition (2.8) does not hold. Finally, we turn to condition (2.9) of Theorem 2.3. For

N
(1)
j = 1, analysis of the right null space of U(1) (or writing out the 2× 2 minors by

hand) yields the constraints αsαt = 0, s �= t, and α2
1 = 0. Since we need two linearly

independent vectors d2,d3 satisfying these constraints, it follows that they are equal

to columns 2 and 3 of I3 up to permutation and scaling. For N
(1)
j = 2, we need a

third vector d1 such that d1,d2,d3 are linearly independent. It follows that α1 �= 0
for d1. There is only one 3 × 3 minor of Φ diag(ΨTdj)Ω

T (the determinant of the
matrix itself), which reads as α1α2α3. Since α1 �= 0, we obtain α2α3 = 0. We have

uniqueness of Ã if α2 = α3 = 0.
To prove this, we return to equating the PARALIND decomposition to its alter-

native. Since B̃ and C̃ have full column rank, we set B̃ = C̃ = I3 without loss of
generality; see [41, lemma 3.4]. As in (A.4), we write

(4.5) Φ diag(ΨTdj)Ω
T = B̄Φ diag(ψT

j )Ω
T C̄T , j = 1, 2, 3 .

Let d2 = (0 ∗ 0)T and d3 = (0 0 ∗)T , where ∗ denotes a nonzero entry. For j = 2,
we use (4.4) and (4.5) to obtain

(4.6) Φ diag(ΨTd2)Ω
T =

⎡
⎣ 0 0 0

0 ∗ 0
0 0 0

⎤
⎦ = b̄2c̄

T
2 ,

which implies that b̄2 = (0 ∗ 0)T and c̄2 = (0 ∗ 0)T . Analogously, for j = 3 we get

(4.7) Φ diag(ΨTd3)Ω
T =

⎡
⎣ 0 0 0

0 0 0
0 0 ∗

⎤
⎦ = b̄3c̄

T
3 ,

which implies b̄3 = (0 0 ∗)T and c̄3 = (0 0 ∗)T . Finally, for j = 1 we have

(4.8) Φ diag(ΨTd1)Ω
T =

⎡
⎣ α1 0 0

0 α2 α1

0 0 α3

⎤
⎦ = b̄1c̄

T
1 + b̄2c̄

T
3 ,

with α1 �= 0 and α2α3 = 0. It follows from the above that matrix b̄2c̄
T
3 has only its

(2, 3)-entry nonzero. Hence, the rank-1 matrix b̄1c̄
T
1 is equal to the left-hand side of

(4.8) with the (2, 3)-entry having any convenient value. For α1 �= 0, it follows that
α2 = α3 = 0 must hold.

Uniqueness of B̃ and C̃ follows analogously by interchanging the roles of ÃΨ,
B̃Φ, and C̃Ω.

Example 3. This example is taken from Bro et al. [4, section 3.2.5]. We have
R1 = 3, R2 = 6, R3 = 4, R = 6, Φ = I6, and

(4.9) Ψ =

⎡
⎣ 1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1

⎤
⎦ , Ω =

⎡
⎢⎢⎣

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
0 1 0 1 0 1

⎤
⎥⎥⎦ .D
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In Stegeman and de Almeida [41, section 5] it was verified that Ã is unique by
condition (2.8). Since rank(Ψ) = 3, kΦ = rank(Φ) = 6, and kΩ = rank(Ω) = 4,
conditions (i)–(iii) of Theorem 2.5 do not hold.

Numerical experiments yield alternatives for C̃ = I4 of the form

(4.10) C̄ =

⎡
⎢⎢⎣

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
∗ ∗ ∗ ∗

⎤
⎥⎥⎦ ,

where ∗ denotes a nonzero element. Hence, only the last column of C̃ appears to
be identified up to scaling. Or one could say that only the first three rows of C̃
are identified. In [41, section 10], it was stated that this type of uniqueness is not
understood from condition (2.8). By making use of the new condition (2.9), however,

we are able to explain this form of C̄. First, we translate condition (2.9) to C̃. It can

be verified that G1,G2,G3 have full column rank, and that N
(3)
1 = N

(3)
2 = N

(3)
3 = 1

and N
(3)
4 = 3. We have

(4.11) Ψdiag(ΩTdj)Φ
T =

⎡
⎣ α1 α4 − α1 0 0 0 0

0 0 α2 α4 − α2 0 0
0 0 0 0 α3 α4 − α3

⎤
⎦ ,

with dj = (α1 α2 α3 α4)
T . Analysis of the 2 × 2 minors shows that this matrix has

rank 1 only if αsαt = 0 for s �= t, and only if α4 = 0. Since we need three linearly
independent vectors d1,d2,d3 satisfying these constraints, it follows that they are
equal to the first three columns of I4 up to permutation and scaling. The matrix has

to have rank N
(3)
4 = 3 for a vector d4 that is linearly independent from d1,d2,d3.

This implies α4 �= 0 in d4. The entries α1, α2, α3 can be nonzero as well. Hence, we
have constrained the alternative to

(4.12) C̄−T =

⎡
⎢⎢⎣

∗ 0 0 ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗

⎤
⎥⎥⎦ ,

where the order of columns may be different (this also depends on the uniqueness

properties of Ã and B̃). For a nonsingular matrix X, we use the notation X−T =
(X−1)T = (XT )−1. For the form of C̄−T in (4.12), we obtain a C̄ exactly of the form
(4.10). Hence, three unique columns of C̄−T translate into three unique rows of C̄.

5. Partial uniqueness conditions for PARALIND. Apart from uniqueness
up to permutation and scaling, other types of uniqueness are also encountered in
PARALIND decompositions. In this section, we present so-called partial uniqueness
conditions, where we call component matrix B̃ partially unique if its columns can
be partitioned into disjoint subsets and each subset is unique up to a nonsingular
transformation. This definition is used in Bro et al. [4] and Stegeman and de Almeida
[41]. For partial uniqueness in CP, see Ten Berge [42]. Formally, we define partial
uniqueness in PARALIND as follows.

Definition 5.1. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such

that Ã, B̃, C̃ have full column rank, and let Ψ,Φ,Ω have full row rank and no
all-zero columns. Let the columns of B̃ be partitioned into disjoint subsets as B̃Πb =
[B̃1| . . . |B̃F ], where Πb is a permutation matrix. We call B̃ partially unique with
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respect to Πb if, for any alternative PARALIND decomposition (ĀΨ, B̄Φ, C̄Ω) with

B̄ partitioned as B̄Πb = [B̄1| . . . |B̄F ], it holds that B̄f = B̃π(f) Sf , f = 1, . . . , F ,
with π(·) a unique permutation on {1, . . . , F}, and Sf a unique nonsingular matrix.

Note that when checking partial uniqueness of B̃ one is free to choose a suitable
column permutation Πb and partition of B̃Πb.

In section 5.1, we present the partial uniqueness condition of [41] as well as our
improved version of it. The relation between these two conditions is analogous to
the relation between Theorems 2.2 and 2.3. In section 5.2, we discuss an alternative
approach to obtain a partial uniqueness condition based on a result for CP by Guo
et al. [15].

5.1. Partial uniqueness conditions for one PARALIND component ma-
trix. The partial uniqueness condition of [41] is as follows. For a partitioned vector
x = (xT

1 | . . . |xT
F )

T , let w′(x) denote the number of parts of x that are not all-zero.
For a vector gf partitioned as x, with w′(gf ) = 1 and generic1 entries in part f , let

(5.1) M
(2)
f = rank(Ω diag(ΦTΠb gf )Ψ

T ) , f = 1, . . . , F .

Theorem 5.2. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such that

Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero columns.
Let the columns of B̃ be partitioned as B̃Πb = [B̃1| . . . |B̃F ], where Πb is a permu-
tation matrix. If G2 has full column rank, and if for any nonzero vector d with the
same partition as B̃Πb,
(5.2)

rank(Ω diag(ΦTΠb d)Ψ
T ) ≤ max(M

(2)
1 , . . . ,M

(2)
F ) implies w′(d) = 1 ,

then B̃ is partially unique with respect to Πb as defined in Definition 5.1.

Proof. See Stegeman and de Almeida [41, section 6]. See Appendix B for a simpler
proof.

When taking the column blocks of B̃ equal to its columns, i.e., setting Πb = IR2

and F = R2, Theorem 5.2 reduces to Theorem 2.2 translated to B̃. We prove the fol-
lowing improved version of Theorem 5.2. For a partitioned vector x = (xT

1 | . . . |xT
F )

T ,

let x(c) be an F×1 vector with x
(c)
f = 0 if xf = 0, and x

(c)
f = 1 if xf �= 0, f = 1, . . . , F .

Theorem 5.3. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such that

Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero columns.
Let the columns of B̃ be partitioned as B̃Πb = [B̃1| . . . |B̃F ], where Πb is a permu-
tation matrix. If G1,G2,G3 have full column rank, and if for any set of vectors

d1, . . . ,dF with the same partition as B̃Πb, and d
(c)
1 , . . . ,d

(c)
F linearly independent,

rank(Ω diag(ΦTΠb df )Ψ
T ) = M

(2)
f , f = 1, . . . , F , implies(5.3)

w′(df ) = 1 , f = 1, . . . , F ,

then B̃ is partially unique with respect to Πb as defined in Definition 5.1.

Proof. See Appendix B for the proof.

1We mean the following. The entries in part f of vector gf are randomly sampled from a
continuous probability distribution, and the rank in (5.1) occurs with probability one. This rank
value is equal to the maximal rank over all gf with nonzero entries only in part f .
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The proofs of Theorems 5.2 and 5.3 are in Appendix B, and are similar. Our
proof of Theorem 5.2 is simpler than in [41], since we do not use De Lathauwer’s [10]
equivalence lemma for partitioned matrices.

It can be seen that condition (5.2) implies condition (5.3). Hence, if not only
G1 but also G2 and G3 have full column rank, then Theorem 5.3 is a relaxation of
Theorem 5.2.

To obtain partial uniqueness conditions for Ã or C̃, we can define ranks M
(1)
f and

M
(3)
f analogous to (5.1), and interchange the roles of ÃΨ, B̃Φ, C̃Ω, and G1,G2,G3,

and M
(1)
f ,M

(2)
f ,M

(3)
f in Theorems 5.2 and 5.3.

5.2. PARALIND partial uniqueness via partitioning in CP. Here, we
discuss a different approach to obtain partial uniqueness results. For a CP decom-
position (A,B,C), Guo et al. [15] proved that if one component matrix, say A, is
unique up to permutation and scaling, then the decomposition can be split up into a
sum of smaller subdecompositions, and the uniqueness properties of B (and C) can be
studied for each subdecomposition separately. Below, we show that in a PARALIND
decomposition (ÃΨ, B̃Φ, C̃Ω) this result yields a partial uniqueness condition for B̃

(or C̃) if Ã is unique up to permutation and scaling. Let

(5.4) ÃΨΠa = [Ã1| . . . |ÃF ] ,

where Πa is a permutation matrix. The partition must be such that

(5.5) span(Ã) = span(Ã1)⊕ · · · ⊕ span(ÃF ) ,

where ⊕ denotes the direct sum of the subspaces. Hence,

(5.6) span(Ãf ) ∩

⎛
⎝⋃

g �=f

span(Ãg)

⎞
⎠ = {0} , f = 1, . . . , F .

Let B̃ and C̃ be partitioned as

(5.7) B̃ΦΠa = [B̃1| . . . |B̃F ] and C̃ΩΠa = [C̃1| . . . |C̃F ] ,

where Ãf , B̃f , and C̃f have the same number of columns, f = 1, . . . , F . Note that
the same permutation matrix Πa is used in (5.4) and (5.7). The subdecompositions

(Ãf , B̃f , C̃f ), f = 1, . . . , F , are also of PARALIND form. Indeed, we have Ãf =

Âf Ψf , B̃f = B̂f Φf , and C̃f = Ĉf Ωf , where Ψf , Φf , and Ωf are smaller constraint

matrices. We define Âf , B̂f , Ĉf as the subsets of columns of Ã, B̃, C̃, respectively,

that occur in the linear combinations that constitute the columns of Ãf , B̃f , C̃f .
Then the constraint matrices Ψf ,Φf ,Ωf are uniquely defined due to the full column

rank of Âf , B̂f , Ĉf .

Next, we formulate our PARALIND partial uniqueness condition for B̃ under
the condition that ΨΠa = IR1 ⊗ 1T

n , with 1n a vector of n ones. In that case,

Ãf = [ãf . . . ãf ] with column ãf repeated n times, f = 1, . . . , R1. Note that F = R1

here.

Theorem 5.4. Let the PARALIND decomposition (ÃΨ, B̃Φ, C̃Ω) be such that

Ã, B̃, C̃ have full column rank, and Ψ,Φ,Ω have full row rank and no all-zero columns.
Let Ã be unique up to permutation and scaling, and let the component matrices be par-
titioned as in (5.4)–(5.7) for some permutation matrix Πa. Also, let ΨΠa = IF ⊗1T

n .

If there exists a permutation Πb such that B̃Πb = [B̂1| . . . |B̂F ], and (Ωf �Ψf )Φ
T
f

D
ow

nl
oa

de
d 

12
/1

1/
12

 to
 1

29
.1

25
.1

39
.1

45
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1264 ALWIN STEGEMAN AND TAM T. T. LAM

has full column rank for f = 1, . . . , F , then B̃ is partially unique with respect to Πb

as defined in Definition 5.1.
Proof. We consider the PARALIND decomposition (ÃΨΠa, B̃ΦΠa, C̃ΩΠa). Ac-

cording to Definition 5.1, to prove partial uniqueness of B̃ with respect toΠb we should
consider the F column blocks B̂1, . . . , B̂F of B̃Πb. Due to the requirement on Πb in
the statement of the theorem, we have

B̃ΦΠa = [B̃1| . . . |B̃F ]

= [B̂1 Φ1| . . . |B̂F ΦF ]

= [B̂1| . . . |B̂F ] blockdiag(Φ1, . . . ,ΦF )

= B̃Πb blockdiag(Φ1, . . . ,ΦF ).

(5.8)

Since B̃ has full column rank, it follows that ΦΠa = Πb blockdiag(Φ1, . . . ,ΦF ) =
Πb Φ

∗, where the last equality defines Φ∗. Hence, we consider the PARALIND de-
composition (ÃΨΠa, B̃ΠbΦ

∗, C̃ΩΠa).
We denote an alternative decomposition by (ĀΨΠa, B̄ΠbΦ

∗, C̄ΩΠa). Equating
the mode-1 matrix unfoldings of the two decompositions yields

(5.9) (B̃ΠbΦ
∗ � C̃ΩΠa) (ÃΨΠa)

T = (B̄ΠbΦ
∗ � C̄ΩΠa) (ĀΨΠa)

T .

Since Ã is unique up to permutation and scaling, it follows that Ā = ÃΠ2Λ2 for some
permutation matrix Π2 and nonsingular diagonal matrix Λ2 = diag(λ1, . . . , λR1).
From the assumed form of ΨΠa, it follows that

(5.10) ĀΨΠa = Ã((Π2Λ2)⊗ 1T
n ) = [λπ2(1)Ãπ2(1)| . . . |λπ2(R1)Ãπ2(R1)] ,

where π2 denotes the permutation defined by Π2. Hence, the permutation and rescal-
ing of the columns of Ã translates into the permutation and rescaling of the parts Ãf

of ÃΨΠa. Let B̄ΠbΦ
∗ = [B̄1| . . . |B̄F ] and C̄ΩΠa = [C̄1| . . . |C̄F ] be partitioned in

the same way as (5.7). The smaller PARALIND decompositions of each part f for

the original and alternative decompositions are given by Ãf = Âf Ψf , B̃f = B̂f Φf ,

C̃f = Ĉf Ωf , and B̄f = ̂̄Bf Φf , C̄f = ̂̄Cf Ωf . As in Guo et al. [15, Theorem
3.1], equations (5.9)–(5.10) and the requirement (5.5) imply that (5.9) is equivalent
to equating the decompositions of the F parts separately:

(5.11) (B̃f � C̃f ) Ã
T
f = (B̄π̃2(f) � C̄π̃2(f)) (λπ̃2(f)Ãf )

T , f = 1, . . . , F ,

where π̃2 denotes the inverse of the permutation π2. In terms of the smaller PAR-
ALIND decompositions, (5.11) is written as

(B̂f ⊗ Ĉf ) (Φf �Ωf )Ψ
T
f ÂT

f = ( ̂̄Bπ̃2(f) ⊗ ̂̄Cπ̃2(f)) (Φπ̃2(f) �Ωπ̃2(f))Ψ
T
f (λπ̃2(f)Âf )

T ,

(5.12)

f = 1 . . . , F .

Due to the requirement on Πb, we have B̃Πb = [B̂1| . . . |B̂F ]. Next, we want to apply
Proposition 2.4(ii) to each subdecomposition in (5.12) separately. Therefore, we need
to have the same constraint matrices on both sides of (5.12). This implies that the
permutation Π2 must be such that the alternative on the right-hand side of (5.12)
has the same Φf and Ωf as on the left-hand side of (5.12). Note that due to the

assumed form of ΨΠa, we have Âf = [ãf ] and Ψf = 1T
n .
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For the subset of Π2 satisfying this requirement, partial uniqueness of B̃Πb =
[B̂1| . . . |B̂F ] follows from applying Proposition 2.4(ii) to each subdecomposition in

(5.12) separately. Since Âf , B̂f , Ĉf have full column rank, partial uniqueness follows
if (Ωf �Ψf )Φ

T
f has full column rank for f = 1, . . . , F .

Theorem 5.4 yields a partial uniqueness condition for C̃ by interchanging the roles
of B̃Φ and C̃Ω. Analogously, partial uniqueness conditions can be obtained if not Ã
but B̃ or C̃ is unique up to permutation and scaling.

The condition on the permutation matrix Πb in Theorem 5.4 can be relaxed
to “there exists a permutation Πb such that B̃Πb = [B̂1S1| . . . |B̂FSF ], with Sf

nonsingular, f = 1, . . . , F”. Since this is a more complicated condition, we chose a
simpler formulation of Theorem 5.4.

6. Examples of partial uniqueness in PARALIND. Here, we demonstrate
the improvement when using Theorem 5.3 instead of Theorem 5.2. Also, we show
that whether Theorem 5.3 or Theorem 5.4 is more relaxed depends on the particular
PARALIND decomposition. First, we continue Example 3 and show that partial
uniqueness of B̃ with respect to Πb = I6 follows from Theorem 5.4 but not from
Theorems 5.2 and 5.3. In Example 4, we construct a PARALIND decomposition such
that all three matrices Ã, B̃, C̃ are not unique up to permutation and scaling. To the
best of our knowledge, this is the first such case in the literature. For this example, we
show that partial uniqueness of B̃ with respect to Πb = I4 follows from Theorem 5.3
but not from Theorem 5.2. Since none of Ã, B̃, C̃ are unique, Theorem 5.4 cannot be
used. In our examples, we assume that Ã, B̃, C̃ have full column rank.

Example 3 (continued). We have R1 = 3, R2 = 6, R3 = 4, R = 6, Φ = I6,
and Ψ and Ω given by (4.9). In Stegeman and de Almeida [41, section 5] it was

verified that Ã is unique by condition (2.8). Here, we show partial uniqueness of

B̃ = [b̃1 b̃2|b̃3 b̃4|b̃5 b̃6]. First, we try Theorem 5.3. We set Πb = I6. It can be
verified that G1,G2,G3 have full column rank. We focus on the matrix

(6.1) Ω diag(ΦTdf )Ψ
T =

⎡
⎢⎢⎣

α1 − α2 0 0
0 α3 − α4 0
0 0 α5 − α6

α2 α4 α6

⎤
⎥⎥⎦ ,

with df = (α1 α2|α3 α4|α5 α6)
T . It can be seen that the ranks (5.1) are M

(2)
1 =

M
(2)
2 = M

(2)
3 = 1. Any three of the following four vectors satisfy condition (5.3):

(1 0|0 0|0 0)T , (0 0|1 0|0 0)T , (0 0|0 0|1 0)T , (1 1|1 1|1 1)T . Hence, Theorem 5.3

cannot be used to show partial uniqueness of B̃ with respect to Πb = I6 (and neither
can Theorem 5.2).

Next, we use the fact that Ã is unique up to permutation and scaling, and try
Theorem 5.4. We set Πa = Πb = I6, and partition ÃΨ as [ã1 ã1|ã2 ã2|ã3 ã3], and

C̃Ω as [c̃1 c̃4 − c̃1|c̃2 c̃4 − c̃2|c̃3 c̃4 − c̃3]. The three PARALIND subdecompositions
are of the same form, with

(6.2) Ψf = (1 1) , Φf = I2 , Ωf =

[
1 −1
0 1

]
, f = 1, 2, 3 .

Since Âf = [ãf ] and Ĉf = [c̃f c̃4] have full column rank, f = 1, 2, 3, and (Ωf �
Ψf )Φ

T
f = Ωf has full column rank, f = 1, 2, 3, the condition of Theorem 5.4 holds

and B̃ = [b̃1 b̃2|b̃3 b̃4|b̃5 b̃6] is partially unique.
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Example 4. Consider the PARALIND decomposition with R1 = 6, R2 = R3 = 4,
R = 6, Ψ = I6, and

(6.3) Φ =

⎡
⎢⎢⎣

1 −1 0 1 0 0
0 1 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎦ , Ω =

⎡
⎢⎢⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎦ .

The six rank-1 terms of the decomposition are
(6.4)
ã1◦b̃1◦ c̃1+ã2◦(b̃2−b̃1)◦ c̃1+ã3◦b̃2◦b̃2+ã4◦(b̃1−b̃2)◦ c̃2+ã5◦b̃3◦ c̃3+ã6◦b̃4◦ c̃4 .

The vectors in the last two rank-1 terms do not occur in the first four rank-1 terms.
An alternative for the first four rank-1 terms is as follows:

(2 ã1 − ã2 + ã3 + ã4) ◦ (b̃1 − b̃2) ◦ c̃1 + (ã1 + ã3) ◦ (b̃2 − (b̃1 − b̃2)) ◦ c̃1(6.5)

+ (ã3 + ã4) ◦ b̃2 ◦ (c̃2 − c̃1) + ã4 ◦ ((b̃1 − b̃2)− b̃2) ◦ (c̃2 − c̃1) .

Hence, none of Ã, B̃, C̃ is unique up to permutation and scaling. As a consequence,
we cannot use Theorem 5.4 to obtain partial uniqueness results.

Next, we show partial uniqueness of B̃ = [b̃1 b̃2|b̃3|b̃4] using Theorem 5.3. We
set Πb = I4. It can be verified that G1,G2,G3 have full column rank. We focus on
the matrix

(6.6) Ω diag(ΦTdf )Ψ
T =

⎡
⎢⎢⎣

α1 α2 − α1 0 0 0 0
0 0 α2 α1 − α2 0 0
0 0 0 0 α3 0
0 0 0 0 0 α4

⎤
⎥⎥⎦ ,

with df = (α1 α2|α3|α4)
T . It can be seen that the ranks (5.1) are M

(2)
1 = 2 and

M
(2)
2 = M

(2)
3 = 1. If the matrix in (6.6) should have rank 1, it follows that α1 =

α2 = 0 and only one of α3 and α4 is nonzero. Hence, in condition (5.3), we obtain

d2 = (0 0| ∗ |0)T and d3 = (0 0|0|∗)T , with corresponding d
(c)
2 = (0 1 0)T and

d
(c)
3 = (0 0 1)T . If the matrix in (6.6) should have rank 2, it follows that either

α1 = α2 = 0 and α3α4 �= 0, or α1 �= 0 or α2 �= 0 and α3 = α4 = 0. Since we need

three linearly independent vectors d
(c)
f in condition (5.3), we obtain d1 = (∗ ∗ |0|0)T

with d
(c)
1 = (1 0 0)T (where at most one of α1 and α2 is zero). We have w′(df ) = 1

for f = 1, 2, 3, and condition (5.3) holds. Note that the matrix in (6.6) has rank 2 for
df = (0 0|1|1)T , which shows that condition (5.2) of Theorem 5.2 does not hold.

Analogously, Theorem 5.3 (and not Theorem 5.2) can be used to show partial

uniqueness of C̃ = [c̃1 c̃2|c̃3|c̃4].
7. Discussion. We have proven improved and more precise variants of the main

PARALIND uniqueness conditions of Stegeman and de Almeida [41]. Our proofs of
the conditions of [41] as well as the new conditions are simpler than the proofs in [41],
since we do not use Kruskal’s [25] permutation lemma (in case of uniqueness up to
permutation and scaling) or De Lathauwer’s [10] equivalence lemma for partitioned
matrices (in case of partial uniqueness). Our condition for uniqueness up to permuta-
tion and scaling in Theorem 2.3 is relatively easy to check by using (symbolic) linear
algebra computation software. The advantage of our uniqueness conditions over those
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of [41] is clearly demonstrated by means of examples from the literature. Also, we
have compared our PARALIND uniqueness conditions to those obtained from the CP
uniqueness conditions of Guo et al. [15]. In the case of uniqueness up to permutation

and scaling, it was verified in [15] that Theorem 2.5 of [15] (for uniqueness of Ã) is
more relaxed than Theorem 2.2 of [41] when kΦ and kΩ are high. This is also true
for our Theorem 2.3. An example where Theorem 2.5 holds but not Theorem 2.3 is
[15, example 2]. On the other hand, our Theorem 2.3 is more relaxed when kΦ and
kΩ are low. In the case of partial uniqueness, the examples in section 6 show that
whether our Theorem 5.3 or Theorem 5.4 based on [15] is more relaxed depends on
the particular PARALIND decomposition.

As stated in section 1, our results are proven for real-valued PARALIND decom-
positions. However, the proofs in Appendices A and B can be translated easily to
the complex case, i.e., with complex-valued component matrices and/or complex-
valued constraint matrices. To do this, we must keep in mind that our vectors
live in a complex vector space Cm, with inner product < x,y >= yHx and norm
||x|| = √

< x,x >, where H denotes the Hermitian or conjugated transpose. As in
Rm, vectors x and y are orthogonal when < x,y >= 0. Also, vectors x1, . . . ,xq ∈ Cm

are linearly independent when a1 x1 + · · · + aq xq = 0 implies a1 = · · · = aq = 0 for
scalars a1, . . . , aq ∈ C. Moreover, the determinant of a complex matrix is defined to
be identical to the determinant of a real matrix, and its relation to the matrix rank is
identical. The considerations above imply that, in order to translate our uniqueness
proofs to the complex case, we must replace the ordinary transpose T by H where
orthogonality is involved. However, in cases where the transpose is due to the formu-
lation of the decomposition such as in (A.1), the transpose should not be changed.
Theorem 2.5 is proven by [15] for the complex case, and the proof of Theorem 5.4 can
also be translated to the complex case.

Appendix A: Proofs of Theorems 2.2 and 2.3. Here we prove Theorem 2.3
and compare its proof to the proof of Theorem 2.2. The latter proof is different from
[41], since we do not use Kruskal’s [25] permutation lemma here. From the comparison
of the proofs it will be clear that Theorem 2.3 is a refinement of Theorem 2.2.

First, suppose the assumptions of Theorem 2.2 hold. Since Ã has full column
rank, [41, Lemma 3.4] implies that without loss of generality we may set Ã = IR1 .
We denote an alternative decomposition by (ĀΨ, B̄Φ, C̄Ω), where Ā is an R1 × R1

matrix. Equating the mode-1 matrix unfolding of the PARALIND decomposition (see
(2.2)) to its alternative yields

(A.1) (B̃⊗ C̃)G1 = (B̄⊗ C̄)G1 Ā
T .

Since B̃, C̃, and G1 have full column rank by assumption, it follows that (B̃⊗ C̃)G1

has full column rank. From (A.1) it follows that also (B̄ ⊗ C̄)G1 has full column
rank, and that Ā is nonsingular. We rewrite (A.1) as

(A.2) (B̃⊗ C̃)G1 Ā
−T = (B̄⊗ C̄)G1 .

We denote the R1 columns of Ā−T as d1, . . . ,dR1 . For column j of (A.2) we have

(A.3) (B̃Φ� C̃Ω)ΨTdj = (B̄Φ� C̄Ω)ψj ,

with ψT
j denoting row j of Ψ. We should pick linearly independent d1, . . . ,dR1 such

that (A.3) holds. If it follows that Ā−T = [d1 . . . dR1 ] = ΠΛ, then Ā = ΠΛ−1.

Hence, in that case Ã = IR1 would be unique up to permutation and scaling.
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Rewriting (A.3) in J ×K matrix form yields

(A.4) B̃Φ diag(ΨTdj)Ω
T C̃T = B̄Φ diag(ψT

j )Ω
T C̄T .

Conditions (2.8) and (2.9) are obtained by taking the rank on both sides of (A.4).

Note that when taking the rank of the left-hand side of (A.4), matrices B̃ and C̃ can
be left out since they have full column rank by assumption. In case of condition (2.8)
we obtain

rank(Φ diag(ΨTdj)Ω
T ) = rank(B̄Φ diag(ψT

j )Ω
T C̄T )

≤ rank(Φ diag(ψT
j )Ω

T )

= N
(1)
j

[1mm] ≤ max(N
(1)
1 , . . . , N

(1)
R1

) .

(A.5)

If (A.5) implies w(dj) = 1, then the linearly independent d1, . . . ,dR1 are necessarily

permuted and rescaled versions of the columns of Ã = IR1 . This completes the proof
of Theorem 2.2.

To prove Theorem 2.3, we proceed as follows. Since G2,G3 and Ã, B̃, C̃ have
full column rank, it follows from Proposition 2.4 that also B̄ and C̄ have full column
rank. Hence, we can delete B̄, C̄ from (A.5). The rank equality in condition (2.9) is
obtained as

(A.6) rank(Φ diag(ΨTdj)Ω
T ) = rank(Φ diag(ψT

j )Ω
T ) = N

(1)
j .

This completes the proof of Theorem 2.3. If the conditions of Theorem 2.3 hold,

then condition (2.9) is a relaxation of condition (2.8) because the inequality N
(1)
j ≤

max(N
(1)
1 , . . . , N

(1)
R1

) is left out in the former.

Appendix B: Proofs of Theorems 5.2 and 5.3. We proceed analogous to the
proofs of Theorems 2.2 and 2.3 in Appendix A. Our proof of Theorem 5.3 is different
from [41], since we do not use the equivalence lemma for partitioned matrices of De
Lathauwer [10] here.

First, suppose the assumptions of Theorem 5.2 hold. We consider the PARALIND
decomposition (ÃΨ, (B̃Πb)(Π

T
b Φ), C̃Ω), and denote an alternative by (ĀΨ, (B̄Πb) ·

(ΠT
b Φ), C̄Ω). Analogous to Appendix A, we set B̃Πb = IR2 without loss of generality,

and we equate the mode-2 matrix unfolding of the PARALIND decomposition (see
(2.3)) to its alternative:

(B.1) (C̃Ω� ÃΨ)ΦT Πb = (C̄Ω� ĀΨ)ΦT Πb Π
T
b B̄T .

As in Appendix A, it follows that B̄ is nonsingular, and that (C̄Ω � ĀΨ)ΦT has
full column rank. Let nf denote the number of columns in part B̄f , f = 1, . . . , F .

Then
∑F

f=1 nf = R2. Let (B̄Πb)
−T = B̄−TΠb = [B̂1| . . . |B̂F ], where the columns

of B̂f are orthogonal to all parts of B̄Πb except part f . Then B̂f has nf columns,

f = 1, . . . , F . Note that partial uniqueness of B̃ with respect to Πb follows if column

x
(f)
j of B̂f satisfies w′(x(f)

j ) = 1 and is not orthogonal to part B̃π(f) for a permutation
π(·), j = 1, . . . , nf , f = 1, . . . , F .

Let the vector df ∈ span(B̂f ) be generic, i.e., df = B̂f h for a generic vector
h. Then the vector gf = ΠT

b B̄
T df has nonzero (and generic) entries only in part f ,

which implies w′(gf ) = w′(ΠT
b B̄

T df ) = 1. We write
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(B.2) (C̃Ω� ÃΨ)ΦT Πb df = (C̄Ω� ĀΨ)ΦT Πb gf .

Rewriting (B.2) in K × I matrix form yields

(B.3) C̃Ω diag(ΦTΠb df )Ψ
T ÃT = C̄Ω diag(ΦTΠb gf)Ψ

T ĀT .

Conditions (5.2) and (5.3) are obtained by taking the rank on both sides of (B.3).

Note that when taking the rank of the left-hand side of (B.3), matrices Ã and C̃ can
be left out since they have full column rank by assumption. In case of condition (5.2)
we have

rank(Ω diag(ΦTΠb df )Ψ
T ) = rank(C̄Ω diag(ΦTΠb gf)Ψ

T ĀT )

≤ rank(Ω diag(ΦTΠb gf)Ψ
T )

= M
(2)
f

≤ max(M
(2)
1 , . . . ,M

(2)
F ) .

(B.4)

According to condition (5.2), this implies w′(df ) = 1. Since df = B̂f h for a generic

vector h, it follows that all columns x
(f)
j of B̂f satisfy w′(x(f)

j ) = 1 and they are not

orthogonal to the same part B̃g. The reasoning above holds for any part f of B̄−TΠb.
Since the latter is nonsingular, we obtain that B̄−TΠb = blockdiag(S−T

1 , . . . ,S−T
F )Π,

where block Sf (nf × nf ) is nonsingular, f = 1, . . . , F , and Π is a block permuta-

tion matrix. This implies B̄Πb = blockdiag(S1, . . . ,SF )Π, which shows that B̃ is
partially unique with respect to Πb as in Definition 5.1. This completes the proof of
Theorem 5.2.

To prove Theorem 5.3, we proceed as follows. Since G1,G3 and Ã, B̃, C̃ have
full column rank, it follows from Proposition 2.4 that also Ā and C̄ have full column
rank. Hence, we can delete Ā, C̄ from (B.4). The rank equality in condition (5.3) is
obtained as

(B.5) rank(Ω diag(ΦTΠb df )Ψ
T ) = rank(Ω diag(ΦTΠb gf )Ψ

T ) = M
(2)
f .

Now the vector df corresponds to the rank M
(2)
f . Hence, we may have a different

condition for different f . If this implies w′(df ) = 1 for each f , then we have partial

uniqueness of B̃ with respect to Πb as explained above. The linear independence of

the vectors d
(c)
1 , . . .d

(c)
F corresponds to the nonsingularity of B̄−TΠb = [B̂1| . . . |B̂F ].

This completes the proof of Theorem 5.3. If the conditions of Theorem 5.3 hold,

then condition (5.3) is a relaxation of condition (5.2) because the inequality M
(2)
f ≤

max(M
(2)
1 , . . . ,M

(2)
F ) is left out in the former.
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